Request for CHANGING an Existing Course

Department and Course Information
- **Department**: Construction Management
- **Course**: CM 1030
- **College**: Engineering
- **Date**: 10/15/2013

Present Course Description
- **Title**: Engineering Graphics
- **Semester Hours of Credit**: 2.0
- **Course Description**:
 - Include course number, title, etc. exactly as it appears in the General Catalog.

Proposed Course Description
- **Title**: Honors Engineering Graphics
- **Semester Hours of Credit**: 2.0
- **Course Description**:
 - Include course number, title, etc. exactly as it appears in the General Catalog.

Contact Information
- **College Contact**:
 - (Please print name.)
- **College Contact E-mail**:
 -

Approval Signatures
- **Department Chair**:
 -
 - (Date)
- **Graduate Dean**:
 -
 - (Date)
- **College Dean**:
 -
 - (Date)
- **Chair, FS C & C Committee**:
 -
 - (Date)
- **Academic Affairs Approval**:
 -
 - (Date)
Anna M Castrillo

From: Warren N Waggenspack
Sent: Thursday, January 09, 2014 7:04 AM
To: Anna M Castrillo
Cc: Charles W Berryman; Stephanie G Heumann; Paige R Davis; Warren N Waggenspack; Michael V Blandino; Lisa Fontenot
Subject: Justification for CM 1030 Engineering Graphics Honors

Anna

CM 1030 is to be the Honors version of the CM 1020 Engineering Graphics. Students in CM 1030 will be required to complete more challenging projects (more complex assemblies of component parts) and more extensive use of the tool itself such as, developing more extensive assembly animations, possible porting of models to available engineering software (Finite Element Analysis-FEA) used for more detailed analysis in upper level courses and in industry.

Because of available resources, the Honors section of the course will be taught concurrently with a CM 1020 section. The CM 1030 students will then be expected to spend additional time outside the class time working as a group with the instructor to complete the expanded portfolio of deliverables.

In the past, the Honors College allowed us to offer Engineering Graphics a couple of pilot special section/Honors option but generally doesn't allow Honors Option for courses numbered under 3###. As such, we have been asked to create this version of the course to allow the large number of incoming Honors students, (declared CoE majors) to have designated Honors courses within the College.

Engineering Graphics is currently only required in ME and IE curricula since to the State mandated restricting curricula to 120 hours without viable justification. However, the fundamental engineering graphics skillset is a valuable asset to ALL engineers in practice. Thus, this as extra course for Honors students in other majors is balanced by the value added to their skills and academic record.

Regards,
Warren N. Waggenspack, Jr.
Associate Dean for Academic Programs
College of Engineering

###

From: Anna M Castrillo <anna.castaillo@ku.edu>
Date: January 7, 2014 at 12:59:53 PM CST
To: Charles W Berryman <cberryman@ku.edu>
Subject: FW: CM 1030

Chuck,

We have our meeting coming up on the 16th and need the justification for the CM 1030 proposal. See below.
CM 1030 – Honors Engineering Graphics

TERM : Spring 2014

CLASS TIME & LOCATION : Monday and Wednesdays
1:00-4:00
1105 Patrick F. Taylor

FACULTY : Paige Davis
3156 Patrick F. Taylor
pdavis3@lsu.edu
225.578.8658

OFFICE HOURS : 8:00-10:00 Tuesday

ONLINE SUPPLEMENT : Moodle

CATALOG COURSE DESCRIPTION : CM 1020 Honors Engineering Graphics (2) 6 hours lab. Credit will not be given for this course and CM 1020. Conception, visualization, and communication of creative design concepts; introduction to engineering drafting and USA Standards Institute standards; freehand sketching; three-dimensional forms used in solution of engineering problems; use of automated graphical techniques in design and design communication.

COURSE OBJECTIVES & OUTCOMES : The primary intent of the course is to provide the student with the skills necessary to understand and interpret engineering drawings and working sketches. Also the student will learn to construct engineering drawings using computer-aided design, CAD.
1. Familiarization with freehand sketching.
2. Sketching multiviews & pictorial drawings.
3. Sectioning and dimensioning multiview drawings.
4. Using CAD to create engineering drawings and models.
5. Reading and understanding engineering working drawings.
6. Developing a digital portfolio

C-I COURSE : This is a certified Communication-Intensive (C-I) course which meets all of the requirements set forth by LSU’s Communication across the Curriculum program, including
1. instruction and assignments emphasizing informal and formal visual communication and technological communication;
2. teaching of discipline-specific communication techniques;
3. use of draft-feedback-revision process for learning;
4. practice of ethical and professional work standards;
5. 40% of the course grade rooted in communication-based work; and
6. student/faculty ratio no greater than 35:1.

Students interested in pursuing the LSU Distinguished Communicators certification may use this C-I course for credit. For more information about this student recognition program, visit www.cxc.lsu.edu.
A brief description of the components is shown below:

Assignments – Students will be required to complete one assignment per week throughout the semester except for the weeks of the midterm and final project. Each assignment pertains directly to the reading and lecture material discussed during the week. Every assignment must be submitted electronically via moodle; sketched assignments must be scanned and saved as a pdf. The assignments are worth 10 points and partial credit is given. No assignments will be accepted late.

Portfolio – A sample of the student’s sketched drawings, computer work and final project must be organized and displayed in a public digital portfolio. In addition, the digital portfolio should include writing and presentation samples. Portfolios will be a means to store work from the semester, as well as an opportunity to showcase it.

Project – Students will form groups of 3-4 members to work together to solve a design problem. Instructions will be provided on the design criteria and constraints but each group is responsible for determining the specific problem. The project will provide students insight to the complete cycle of the engineering design process first by identifying a problem, then solving the problem, creating the models, and lastly documenting the solution. All design problems must be approved by the instructor two weeks prior to the due date.

Midterm – The test will be given in the classroom during class time. It will be a one-hour exam covering the topics from the lectures and textbook Chapters 1-6, 9, 10, and 12. The format of the test will be multiple choice, short answer and sketching. The only materials needed to take the exam are a pencil, eraser, and ruler. No calculator or other electronic device is allowed.

Final Exam – A comprehensive written exam that covers the material from the lectures, assignments, textbook, workbook and computer labs. The only materials needed to take the exam are a pencil and eraser. No calculator or other electronic device is allowed.

COURSE Required Text Books:

MATERIALS AND RESOURCES

- *Engineering Drawing Problems Workbook Series 4* by Davis and Juneau.

Supplies:

- Ruler (inches and millimeters)
- Scales (Engineering and Architecture)
- USB storage device
- Pencil & Eraser
- Tiger Cash (for printing)

Department/Course Policies:

1. No make-up exams (excuses for such are defined by the university regulations).
2. No late homework accepted.
3. Students are expected to attend all classes. If absence is necessary, notify the instructor before the fact, if possible. Absences will only be excused when meeting the requirements of University Policy Statement 22.

4. In-class participation, asking questions, and completing extra credit assignments are encouraged.

5. Academic dishonesty will be dealt with according to university regulations and policy. It is each student’s responsibility to understand these regulations.

6. No eating, drinking, tobacco products, gum, magazines, or newspapers are allowed in CM classrooms.

7. Turn cell phones off, or place on the silent mode.

Late Policy

Projects submitted 0 - 24 hours late will have a 20% deduction. Projects submitted 24-48 hours late will have a 30% deduction. No projects will be accepted after 48 hours from original due date.

Plagiarism

Students are responsible for citing all work properly. Copied or plagiarized work will not be accepted. Proper citation and attribution is expected for all non-original material submitted. Students are expected to be familiar with the plagiarism policy as set forth by the university in the *Code of Student Conduct* (Louisiana State University, 2009). For more information about plagiarism, the different types of plagiarism or how to cite sources properly refer to http://www.plagiarism.org/.

Classroom Civility

Students are expected to assist in maintaining a classroom environment that is conducive to learning. To create an environment in which learning is the primary objective, students are asked to refrain from disruptive behaviors, tardiness, leaving early, sleeping, prolonged visiting with other students, and making inappropriate or offensive remarks. This is not a comprehensive list – in general, treat the instructor and other class members with respect.

Support Services

Louisiana State University offers a variety of student services to help make students be successful both in and out of the classroom. If you need assistance please note the following resources are available.

- Career Services – 1502 Patrick F. Taylor, 578.2162
- Center of Academic Services – B31 Coates Hall, 578.2872
- College of Engineering Counselors – 3304 Patrick F. Taylor, 578.5731
- Student Health Center – 578.6271
Office of Disability Services

If you have a disability that may have some impact on your work in this class and for which you may require accommodations, then see a staff member in the Office of Disability Services (112 Johnston Hall) so that such accommodations can be considered. Students that receive accommodation letters and require additional time on exams must make arrangements with me at least THREE (3) days prior to any exam where accommodation is requested.

Class Contacts:

Members of your class are valuable resources for notes, assignments, announcements, etc. that are needed in the case that you are absent from class. Record the names, phone numbers and email addresses of 2-3 students that are willing to assist you if you are absent.

<table>
<thead>
<tr>
<th>Student Contact</th>
<th>Phone Number</th>
<th>E-Mail Address</th>
</tr>
</thead>
</table>
Faculty Senate Courses and Curricula Committee

From: Lawrence Rouse, Chair, Courses and Curricula Committee

At their January 16, 2014 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the CM proposals:

CM 4202
- The Committee conditionally approved the proposal to change CM 4202 pending the submission of a letter of support from ARCH for the inclusion of ARCH 3008 as a prerequisite. The Committee also wanted a justification as to why CM 3201 is replacing CM 4221 as a prerequisite of the course.

CM 1030
- The Committee conditionally approved the proposal to change CM 1030 pending a more detailed description of the grading components such as the assignments, portfolio, and project. Will the project be assigned by the instructor or chosen by the student? The Committee also suggested that the total contact hours should be increased to up to 6 hours as this will be an Honors course. The regular course, CM 1020, is also a four contact hour course. According to PS-45, 1 lab credit hour consists of 2-3 contact hours; therefore, the range for which this course can meet is 4-6 contact hours. The course will still maintain its 2 credit hour status. This will then eliminate the need for extra work outside of class.

CM 3111, 3502, 3503, 4110
- The Committee approved these courses.

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastrl@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.
Request for CHANGING an Existing Course

Department: GEOLOGY and GEOPHYSICS
Course Rubric and #: GEOL4068
College: SCIENCE
Date: Jan 15 2014

Present Course Description

<table>
<thead>
<tr>
<th>Title</th>
<th>Reflection Seismology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Hours of Credit:</td>
<td>3</td>
</tr>
<tr>
<td>If combination course type, # hrs. of credit for lecture:</td>
<td>2</td>
</tr>
<tr>
<td>lab/sem</td>
<td>1</td>
</tr>
<tr>
<td>Repeat Credit Max (if repeatable)</td>
<td></td>
</tr>
</tbody>
</table>
| Graduate Credit? | Yes: YES
No: |
| Credit will not be given for this course and: | |
| Contact Hours Per Week: (Indicate hours in appropriate course type.) | 5 |
| Grading System: Letter Grade | YES
Pass/Fail |

Course Description:
Include course number, title, etc., exactly as it appears in the General Catalog.

Prereq.: PHYS 1201 or PHYS 2113 or MATH 1550 or consent of instructor. 2 hrs. lecture; 3 hrs. lab. Seismic reflection techniques used to investigate shallow earth structure; waves in layered media, correlation, convolution, deconvolution and spectral analysis; interpretation of seismic record sections.

Proposed Course Description

<table>
<thead>
<tr>
<th>Title</th>
<th>Reflection Seismology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Hours of Credit</td>
<td>3</td>
</tr>
<tr>
<td>If combination course type, # hrs. of credit for lecture:</td>
<td>2</td>
</tr>
<tr>
<td>lab/sem</td>
<td>1</td>
</tr>
<tr>
<td>Repeat Credit Max (if repeatable)</td>
<td></td>
</tr>
</tbody>
</table>
| Graduate Credit? | Yes: YES
No: |
| Credit will not be given for this course and: | |
| Contact Hours Per Week: (Indicate hours in appropriate course type.) | 5 |
| Grading System: Letter Grade | YES
Pass/Fail |

Course Description:
Include course number, title, etc., exactly as it will appear in the General Catalog.

Prereq.: PHYS 1202 or PHYS 2113 or MATH 1550, or consent of instructor. 2 hrs. lecture; 3 hrs. lab. Seismic reflection techniques used to investigate shallow earth structure; waves in layered media, correlation, convolution, deconvolution and spectral analysis; interpretation of seismic record sections.

Notes

- THESE QUESTIONS MUST BE ANSWERED COMPLETELY AND ACCURATELY OR PROPOSAL WILL BE RETURNED.
- Has this change been discussed with and approved by all departments/colleges affected? Yes (x) No () N/A ()
- Is this course included in any curricula, concentrations, or minors? Yes (x) No () If yes, please list on a separate sheet.
- Is this course a prerequisite or corequisite for other courses? Yes () No () If yes, list courses; use separate sheet.
- Is this course on the General Education list? Yes () No ()

JUSTIFICATION/EXPLANATION: Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS:

- Department Faculty Approval Date: 1/16/14
 Signature:
 (Date)
- Department Chair's Signature:
 (Date)
- Graduate Dean's Signature:
 (Date)

College Contact: kim_kubicek
(Please print name.)

College Contact E-mail: kubicek@asu.edu
Academic Affairs Approval (Date)

Notes:

- College Faculty Approval Date: 2/5/14
 Signature:
 (Date)
- College Dean's Signature:
 (Date)
- Chair, FS C & C Committee:
 (Date)
JUSTIFICATION for CHANGE in the PRE-REQUISITES

One of the original pre-requisite courses (PHYS2101) is no longer being offered by the PHYSICS department. We have changed the course pre-requisites to the currently available equivalent courses offered by the PHYSICS department and which our undergraduate students are required to take to complete a major in the field of geology and geophysics. Currently, our undergraduate majors are allowed to take the following options in one of three areas of concentration:

1. For the B.S. degree with concentration in Geology
 PHYS1201 and, PHYS1202 or PHYS2002
 OR
 PHYS2110 and PHYS2113

2. For the the B.S. degree with concentration in Environmental Geology
 PHYS1201 and PHYS1202
 or
 PHYS2110, PHYS2112 and PHYS2113

3. For the the B.S. degree with concentration degree in Geophysics
 PHYS1201 and PHYS1202
 or
 PHYS2110, PHYS2112 and PHYS2113

The new pre-requisites allow all undergraduate students majoring in geology and geophysics and who have taken two physics classes prior to the course, to enroll in GEOL4068.
GEOL 4068 is a required course for students majoring in Geology with a concentration in Geophysics. It can be used as 4000-level geology course in the Geology concentration.
Request for CHANGING an Existing Course

Department: Geology and Geophysics
Course Rubric and #: Geol7081
College: Science
Date: 1-7-2014

Present Course Description
Title: Isotope Geochemistry
Semester Hours of Credit: 3

If combination course type, # hrs. of credit for lecture: 2
Repeat Credit Max (if repeatable): X
Graduate Credit?: Yes: X No: No
Credit will not be given for this course and:

Contact Hours Per Week: (Indicate hours in appropriate course type.)
LEC 2 LAB 2 SEM 2 REC 2 PRAC 2
Total Weekly Contact Hours: 4
Grading System: Letter Grade: X Pass/Fail

Course Description:
Include course number, title, etc. exactly as it appears in the General Catalog:
7081 isotope Geochemistry (3) prereq.; consent of instructor. 2 hrs. lecture; 2 hrs. lab/demonstration. Stable isotope fractionation in natural systems; emphasis on oxygen, hydrogen, and carbon isotope-ratio variation in natural waters, carbonates and silicates with application to the solution of petrologic problems.

Proposed Course Description
Title: Isotope Geochemistry
Semester Hours of Credit: 3

If combination course type, # hrs. of credit for lecture:
Repeat Credit Max (if repeatable):
Graduate Credit?: Yes: X No: No
Credit will not be given for this course and:

Contact Hours Per Week: (Indicate hours in appropriate course type.)
LEC 3 LAB 3 SEM 3 REC 3 PRAC 3
Total Weekly Contact Hours: 3
Grading System: Letter Grade: X Pass/Fail

Course Description:
Include course number, title, etc. exactly as it will appear in the General Catalog:
7081 Isotope Geochemistry (3) prereq.; consent of instructor. 3 hrs. lecture. Stable isotope fractionation in natural systems; emphasis on oxygen, hydrogen, and carbon isotope-ratio variation in natural waters, carbonates and silicates with application to the solution of petrologic problems.

These questions must be answered completely and accurately or proposal will be returned.

Has this change been discussed with and approved by all departments/colleges affected? Yes (x) No () N/A ()
Is this course included in any curricula, concentrations, or minors? Yes () No (x) If yes, please list on a separate sheet.
Is this course a prerequisite or corequisite for other courses? Yes () No (x) If yes, list courses; use separate sheet.
Is this course on the General Education list? Yes () No (x)

Justification/Explaination: Use separate sheet.

Note: If course is or will be cross-listed, separate forms must be submitted by each department.

Approvals:
Department Faculty Approval Date: Dec 11 2013
Department Chair's Signature: Kim Kubicek

College Faculty Approval Date: 1/30/14
College Dean's Signature: Chair, FS C & C Committee

College Contact: Kim Kubicek
College Contact E-mail: kubicek@isu.edu

Academic Affairs Approval Date: 2/15/14
Justification
Removing laboratory/demonstration and adding an additional lecture hour to provide graduate students with more theoretical knowledge. Introducing an embedded and independent research project.
Geol-7081: Stable isotope Geochemistry: Principle and application (Fall 2013)
(___________ pm at Howe-Russell E_____)

Instructor: Dr. Huiming Bao (Phone: 8-3419)
Office: E338 Howe-Russell, LSU
E-mail: bao@lsu.edu; Website: http://geol.lsu.edu/hbao/
Pre-requirements: General chemistry, basic physical chemistry, and Earth system history

Statement of Purpose
The application of stable isotope ratios to physical, chemical, and biological problems has been enjoying a great expansion for over half a century. Stable isotope ratios are one of the most useful tools for understanding processes in nature, especially for events that occurred in the distant past. The goal of this course is to introduce concepts, principles, methodologies, and cases of applications on the distributions of stable isotopes (e.g., C, O, S, N, H, Cl, Mg, Mo, Fe, Hg, Se) in nature. Geological, environmental, and biological problems are cases of interest, although other examples may be discussed. I will focus on universal principles that are applicable to isotopes of different elements, and on quantitative understanding and handling of fractionation processes.

Structure
Geol 7081 is not an undergraduate-level course that focuses on an introduction of the subject. It is also not your average graduate-level course in that it demands your deep knowledge of physics, chemistry, biochemistry, and quantitative skill in addition to the understanding of complex Earth system and its history. In Fall 2013 we will not have a designated textbook. Instead, we will have several reference books (listed below) and you are encouraged to read all of them. Key reference papers will be distributed in class. I will also send you my draft of lecture notes for reference before or after a lecture. There will be reading assignments, problem sets (>10), and discussion sessions. Each one of you will play a leading role in discussing one particular topic of my random choice at least ONCE in the semester (mostly in the second half of the semester). We will have two session exams (all close-book-or-notes) and a final term paper. Note that your problem sets will be graded but the grades only count 5% towards your final grade (because I want you to do more than just the problem sets in order to do well in the exams).
We will have two classes per week, each last 80 minutes. Laboratory demonstration, training, and practice will be included in those lectures. We do not have a regular lab session.

Reference books
1. Robert E. Criss: Principles of Stable Isotope Distribution, 1999 (best in quantification of dynamic processes, especially in hydrological processes)
3. Jochen Hoefs, Stable Isotope Geochemistry, 6th edition, 2009 (Concise yet comprehensive list of stable isotope applications in geology)
4. Environmental Isotopes in the Hydrological Cycle: Principles and Applications
 VOLUME I: INTRODUCTION - THEORY, METHODS, REVIEW
 by Willem G Mook,
Grading

Problem sets: 5% (total >10 sets)
Session exam I: 35% (Questions are similar to those in problem sets)
Session exam II: 35% (same style as Exam I)
Class preparation, attendance, and discussion performance: 5%;
Final term paper presentation: 5% (to be presented 2-3 weeks before the term paper is due so you have time to incorporate feedbacks; graded by fellow students)
Final term paper: 15% (~10 pages -- size 11, Times New Roman, and double-spaced)

I expect everyone read the reading assignment and prepare to discuss the subject in depth. Informal class discussion is a major component of the course.

The topic of your final term paper will be lottered from a set of agreed topics (see samples below). The term paper will be evaluated from the clarity of the problem statement, the layout of the history of the problem, hypothesis, major progresses, current debates, gaps of knowledge, and frontiers for further study. The topic cannot be the same one as that you may have chaired in your Discussion sessions.

Always bring a calculator and scratch paper to the classroom.

Syllabus (see the flow diagram)

Chapter I: Concepts and Notations
Chapter II: Analytical Methods
Chapter III: Mechanisms of isotope fractionation – Equilibrium
Chapter IV: Mechanisms of isotope fractionation – Kinetic
Chapter V: Isotope fractionation in complex systems or non-equilibrium processes
Chapter VI: Higher-dimensional isotope relationships
 1. Multiple isotopes of the same element
 2. Multiple isotopologues of the same molecule
 3. Isotope behavior for multi-elements in a single ion
 4. NTMD isotope fractionation
Case Studies (topics depending on students’ interest)
Appendices
Stable isotope geochemistry

Concepts and terminology

\[R, \delta, \delta', \Delta, \alpha, \varepsilon \]

Thermodynamic
/Equilibrium fractionation

Analytical methods

Kinetic/Non-equilibrium fractionation

Accurate description and quantification of a system or a process that involves isotope fractionations

Higher-dimensional relationships among isotopologues

\[\Delta, \theta, \dot{i}, C, \text{ and } S \]

Diagram showing the flow of course Geol7081.
Request for CHANGING an Existing Course

Present Course Description

Title Heat Transfer

Semester Hours of Credit 3

If combination course type, # hrs. of credit for **lab/sem** lecture: __________

Repeat Credit Max (if repeatable) __________

Graduate Credit? Yes: ☑ No: ☐

Contact Hours Per Week: (Indicate hours in appropriate course type.)

<table>
<thead>
<tr>
<th>LEC</th>
<th>X</th>
<th>LAB</th>
<th>SEM</th>
<th>REC</th>
<th>RES/IND</th>
<th>CLIN/PRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Weekly Contact Hours: __3__

Grading System: **Letter Grade** X Pass/Fail __________

Course Description:

Include course number, title, etc., exactly as it appears in the General Catalog.

4433 Heat Transfer (3) Prereq.: ME 2334 or ME 3333, ME 3834; a grade of "C" or better in MATH 2090 or equivalent. Principles of heat transfer by conduction, radiation and convection.

Proposed Course Description

Title Heat Transfer

Semester Hours of Credit 3

If combination course type, # hrs. of credit for **lab/sem** lecture: __________

Repeat Credit Max (if repeatable) __________

Graduate Credit? Yes: ☑ No: ☐

Contact Hours Per Week: (Indicate hours in appropriate course type.)

<table>
<thead>
<tr>
<th>LEC</th>
<th>X</th>
<th>LAB</th>
<th>SEM</th>
<th>REC</th>
<th>RES/IND</th>
<th>CLIN/PRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Weekly Contact Hours: __3__

Grading System: **Letter Grade** X Pass/Fail __________

Course Description:

Include course number, title, etc., exactly as it will appear in the General Catalog.

4433 Heat Transfer (3) Prereq.: ME 2334 or ME 3333, ME 3834; a grade of "C" or better in MATH 2070 or 2090 or equivalent. Principles of heat transfer by conduction, radiation and convection.

THESE QUESTIONS MUST BE ANSWERED COMPLETELY AND ACCURATELY OR PROPOSAL WILL BE RETURNED.

Has this change been discussed with and approved by all departments/colleges affected? Yes () No () N/A ()

Is this course included in any curricula, concentrations, or minors? Yes () No () If yes, please list on a separate sheet.

Is this course a prerequisite or corequisite for other courses? Yes () No () If yes, list courses; use separate sheet.

Is this course on the General Education list? Yes () No ()

JUSTIFICATION/EXPLANATION: Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS:

Department Faculty Approval Date 12/17/13

Department Chair's Signature (Date) 2/17/14

Graduate Dean's Signature (Date) 2/17/14

College Contact: ____________________________

College Contact E-mail: ________________________

College Faculty Approval Date 2/10/14

College Dean's Signature (Date) 2/17/14

Chair, FS C & C Committee (Date) 2/17/14

Academic Affairs Approval (Date) 2/18/14
JUSTIFICATION

The Mechanical Engineering Faculty voted to change the requirement from MATH 2090 Elementary Differential Equations and Linear Algebra (4) to MATH 2070 Mathematical Methods in Engineering (4). MATH 2070 covers needed subjects like Fourier series that are no longer covered in MATH 2090.

This course is required for the BS ME degree.

This course is a prerequisite for ME 4621 and a co-requisite for ME 4243.
Present Course Description

Title
Gas Dynamics

Semester Hours of Credit
3

Course Rubric and #
ME 4843

Effective Date
1/30/14

Contact Hours Per Week
3

Course Description
Include course number, title, etc., exactly as it appears in the General Catalog.

4843 Gas Dynamics (3)
Prereq.: ME 2334 or a grade of "C" or better in MATH 2090 or equivalent. Derivation and review of basic equations of compressible fluid flow; reduction of the general problem to 1-D flow; 1-D flow in nozzles with and without friction; 1-D flow with heat addition; normal shock wave, Prandtl-Meyer turn and oblique shock waves.

Proposed Course Description

Title
Gas Dynamics

<table>
<thead>
<tr>
<th>Short Title</th>
<th>GAS DYNAMICS</th>
</tr>
</thead>
</table>

Semester Hours of Credit
3

Course Rubric and #
ME 4843

Effective Date
1/30/14

Contact Hours Per Week
3

Course Description
Include course number, title, etc., exactly as it appears in the General Catalog.

4843 Gas Dynamics (3)
Prereq.: ME 2334 or a grade of "C" or better in MATH 2090 or equivalent. Derivation and review of basic equations of compressible fluid flow; reduction of the general problem to 1-D flow; 1-D flow in nozzles with and without friction; 1-D flow with heat addition; normal shock wave, Prandtl-Meyer turn and oblique shock waves.

Justification/Explanation
Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.
JUSTIFICATION

The Mechanical Engineering Faculty voted to change the requirement from MATH 2090 Elementary Differential Equations and Linear Algebra (4) to MATH 2070 Mathematical Methods in Engineering (4). MATH 2070 covers needed subjects like Fourier series that are no longer covered in MATH 2090.

This course is a core course for the Aerospace Engineering Minor.
Request for CHANGING an Existing Course

Department Mech and Industrial Eng
College Engineering
Course Rubric and # IE 4516
Date 2/10/14

Present Course Description

Title Plant and Systems Design
Semester Hours of Credit 3

If combination course type, # hrs. of credit for:
- lecture: X lab/sem
- rec:

Repeat Credit Max (if repeatable):

Graduate Credit? Yes:
No:

Credit will not be given for this course and:

Contact Hours Per Week: (Indicate hours in appropriate course type.)
- LEC 3 LAB 0 SEM 0 REC 0 RES/IND 0 CLIN/PRACT 0

Total Weekly Contact Hours: 3

Grading System: Letter Grade X Pass/Fail

Course Description:

Include course number, title, etc., exactly as it appears in the General Catalog:

Prereq.: IE 3201 and credit or registration in IE 3520 and CM 2141. Machine loading, assembly balancing techniques, design of physical-manufacturing systems, integrating materials-handling systems into the plant, design of plant service systems, site and plant location and projects involving plant design using optimization techniques; ethics and professionalism.

Proposed Course Description

Title Plant and Systems Design
Short Title PLANT & SYS DESIGN
Semester Hours of Credit 3

If combination course type, # hrs. of credit for:
- lecture: X lab/sem
- rec:

Repeat Credit Max (if repeatable):

Graduate Credit? Yes:
No:

Credit will not be given for this course and:

Contact Hours Per Week: (Indicate hours in appropriate course type.)
- LEC 3 LAB 0 SEM 0 REC 0 RES/IND 0 CLIN/PRACT 0

Total Weekly Contact Hours: 3

Grading System: Letter Grade X Pass/Fail

Course Description:

Include course number, title, etc., exactly as it will appear in the General Catalog:

Prereq.: IE 3201 and credit or registration in IE 3520 and IE 4113 or ISDS4113. Machine loading, assembly balancing techniques, design of physical-manufacturing systems, integrating materials-handling systems into the plant, design of plant service systems, site and plant location and projects involving plant design using optimization techniques; ethics and professionalism.

THESE QUESTIONS MUST BE ANSWERED COMPLETELY AND ACCURATELY OR PROPOSAL WILL BE RETURNED.

Has this change been discussed with and approved by all departments/colleges affected? Yes (X) No ()

Is this course included in any curricula, concentrations, or minors? Yes () No (X) If yes, list on a separate sheet.

Is this course a prerequisite or corequisite for other courses? Yes (X) No () If yes, list courses; IE 4597 only.

Is this course on the General Education list? Yes () No (X) If yes, list on a separate sheet.

JUSTIFICATION/EXPLANATION: Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS

Department Faculty Approval Date 10 Jan 2014

Department Chair's Signature (Date)

Graduate Dean's Signature (Date)

College Faculty Approval Date 9/21/13

College Dean's Signature (Date)

Chair, FS C & C Committee (Date)

College Contact E-mail:

Academic Affairs Approval (Date)
JUSTIFICATION

This course modification is required because the Department of Construction Management has canceled CM 2141 and their new course does not meet our needs. We have created a cross listed course to replace it with, IE 4113 (cross listed with ISDS 4113).
Request for CHANGING an Existing Course

Department: ISDS
College: Business
Date: 2/10/14

Present Course Description

Title: Information Technology Project Management
Semester Hours of Credit: 3

Course Description:
Include course number, title, etc., exactly as it appears in the General Catalog.
- Prereq: credit or registration in ISDS 3100.
- Topics on effectively managing information technology projects including: setting goals and objectives; work breakdown structures; project scheduling; managing project resources, evaluation and review; incentives and qualitative analysis; project accounting; extensive use of cases involving hands-on computer analyses with state-of-the-art project management software.

Proposed Course Description

Title: Information Technology Project Management
Semester Hours of Credit: 3

Course Description:
Include course number, title, etc., exactly as it will appear in the General Catalog.
- Prereq: credit or registration in ISDS 3100 or consent of instructor. Also offered as IE 4113.
- Credit will not be given for this course and IE 4113.
- Topics on effectively managing information technology projects including: setting goals and objectives; work breakdown structures; project scheduling; managing project resources; evaluation and review; incentives and qualitative analysis; project accounting; extensive use of cases involving hands-on computer analyses with state-of-the-art project management software.

Prereq:
- Credit or registration in ISDS 3100.

Contact Hours Per Week:
- Indicate hours in appropriate course type.
 - **LEC:** 3
 - **LAB:** 0
 - **SEM:** 0
 - **REC:** 0
 - **RES/IND:** 0
 - **CLIN/PRACT:** 0

Grading System:
Letter Grade: X
Pass/Fail

Approval Details

Department Faculty Approval Date: 2-10-14
Department Chair's Signature: (Date)
Graduate Dean's Signature: (Date)

College Faculty Approval Date: 2-13-14
College Dean's Signature: (Date)
Chair, FS C & G Committee: (Date)

College Contact: Ashley Jenek
College Contact E-mail: ayyenek@kent.edu
Academic Affairs Approval: (Date)
Justification:

The new course, IE 4113, which is crosslisted with ISDS 4113 is required because the Department of Construction Management has cancelled CM 2141 and their new course does not meet the IE department's needs. The prerequisites have changed to accommodate for the IE curriculum, which does not require ISDS 3100.
I sent an email to our faculty asking them to vote on the issue.
There are no objections to IE creating a course similar to ISDS 4113.
But the faculty objects to changing our prerequisite to two of the IE classes as originally planned.
However, adding "or consent of instructor" is acceptable.

Helmut Schneider

Sent from my iPad

On Feb 12, 2014, at 4:25 PM, "Anna M Castrillo" <d wrote:

Dr. Schneider,

I spoke with Dr. Larry Rouse, the chair of the C&C Committee, and we will be meeting tomorrow to
discuss the IE proposals. It seems there may be an easier way about this crosslisting, IE/ISDS 4113. Dr.
Rouse thinks "credit or registration in ISDS 3100 and consent of instructor" may be the best option. The
reasoning behind this is that the IE curriculum does not have ISDS 3100 as a required course and
students would then not be able to take IE/ISDS 4113.

After our meeting tomorrow, I will let you know what the committee has suggested. This is a critical
proposal as IE has a course in their curriculum that no longer exists and we are publishing the 14-15
catalog very soon. Tomorrow is the last C&C meeting to get anything into the 14-15 catalog.

Sincerely,

Anna Castrillo, M.A.
Coordinator
Office of the University Registrar
Louisiana State University
112 Thomas Boyd Hall
Phone: (225)578-4111
Fax: (225)578-5991
<image003.jpg>
Request for CHANGING an Existing Course

Department: Kinesiology
College: Human Sciences & Education

Course Rubric and #: KIN 7530
Date: 10/4/13

Present Course Description

Title: Exercise Physiology

Semester Hours of Credit: 3

If combination course type, # hrs. of credit for:
- Lecture: 2
- Lab/Sem: __
- Rec: __

Repeat Credit Max (if repeatable): __

Graduate Credit? Yes: YES
No: __

Credit will not be given for this course and:

Contact Hours Per Week: (Indicate hours in appropriate course type.)
- LEC: 2
- LAB: 2
- SEM: __
- REC: __
- RES/IND: __
- CLIN/PRACT: __

Total Weekly Contact Hours: 4

Grading System: Letter Grade \(\times \)
Pass/Fail __

Course Description: Include course number, title, etc., exactly as it appears in the General Catalog.

7530 Exercise Physiology (2) 2 hrs. lecture; 2 hrs. lab. Physical, chemical and environmental factors influencing physical performance; bioenergetics, cardiovascular and respiratory adjustments to exercise; research relevant to conditioning and physiological responses to exercise.

Proposed Course Description

Title: Exercise Physiology

Short Title: EXERCISE PHYSIOLOGY

Semester Hours of Credit: 3

If combination course type, # hrs. of credit for:
- Lecture: 3
- Lab/Sem: __
- Rec: __

Repeat Credit Max (if repeatable): __

Graduate Credit? Yes: YES
No: __

Credit will not be given for this course and:

Contact Hours Per Week: (Indicate hours in appropriate course type.)
- LEC: 3
- LAB: 0
- SEM: __
- REC: __
- RES/IND: __
- CLIN/PRACT: __

Total Weekly Contact Hours: 3

Grading System: Letter Grade \(\times \)
Pass/Fail __

Course Description: Include course number, title, etc., exactly as it will appear in the General Catalog.

7530 Exercise Physiology (3) Physical, chemical and environmental factors influencing physical performance; bioenergetics, cardiovascular and respiratory adjustments to exercise; research relevant to conditioning and physiological responses to exercise.

Has this change been discussed with and approved by all departments/colleges affected? Yes () No () N/A ()

Is this course included in any curricula, concentrations, or minors? Yes (X) No () If yes, please list on a separate sheet.

Is this course a prerequisite or corequisite for other courses? Yes (X) No () If yes, list courses; use separate sheet.

Is this course on the General Education list? Yes () No (X)

JUSTIFICATION/EXPLANATION: Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS:

- **Department Faculty Approval Date**: 10-4-13
- **Department Chair’s Signature**:

- **Graduate Dean’s Signature**: 2-17-14

- **College Faculty Approval Date**: 1-30-14
- **College Dean’s Signature**:

- **Chair, FS C & C Committee**: 11-30-14

College Contact: Casey Bennett
College Contact E-mail: cbenne5@lsu.edu

Academic Affairs Approval: 2/18/14
This course is included in the following curricula/concentrations:
 Master of Science in Kinesiology: Exercise Physiology Specialization
 Doctor of Philosophy in Kinesiology: Exercise Physiology Specialization

This course is a **prerequisite** for:
KIN 7533, KIN 7535, KIN 7536, KIN 7537, KIN 7538, KIN 7539, KIN 7550, KIN 7551 and proposed new course KIN 7546.

Justification:
Since the inception of this course more than 25 years ago, the volume of information that needs to be covered has increased by more than 30%. This makes it difficult to cover the basic material in a 2 hour weekly lecture. By increasing the lecture to 3 hours it should be possible to cover the necessary material. Having this class expand to a two semester class would not be desirable as there are eight other classes requiring this class to be completed before enrollment, and would set the student progress behind by a semester. The laboratory portion of this course is redundant as the material is covered in KIN 7539 which is a required course in the degree plan.
KIN 7530: Exercise Physiology
Fall 2013
Tuesdays and Thursdays: 3:00-4:50pm

INSTRUCTOR: Laura K. Stewart, Ph.D.
PHONE: 578-3549
E-MAIL: stewart6@lsu.edu
OFFICE HOURS: By appointment

Course Description: Physical, chemical, and environmental factors influencing physical performance; bioenergetics, cardiovascular and respiratory adjustments to exercise; research relevant to condition and physiological responses to exercise.

Course Objectives: The objectives of this course are to provide students with: 1- advanced concepts in exercise physiology; 2 – a detailed understanding of the physiologic, metabolic, neuroendocrine and biochemical changes and adaptations of the human body when exposed to a single bout or chronic exercise; 3 – an ability to synthesize the science behind exercise physiology and its clinical and practical application.

Course Activities:

1. Pop Quizzes: (15x10 points each = 150 points total) For the class to be successful, everyone must be engaged. This includes being prepared for class by completing the reading materials, attending class and being on time, paying attention, participating in class discussions, and staying the entire class period. You will complete 15 pop quizzes over the course of the class to ensure that you are

2. Article Presentation: (50 points total) Each student will present (30 min) a brief summary and lead a discussion of a peer-reviewed original investigation (not a review paper) published in the last 3 years. See Separate Handout for Criteria. Papers MUST be sent by the presenter to all members of the class at least 1 week before the presentation. Articles that are not sent to the class and instructor on time will receive an automatic 20% reduction.

3. Two Exams: (2 x 100 points each = 200 points total): Exams are short answer/essay format.

4. Lab Component (100 points total): Weekly Data Interpretation. You will be given data to interpret prior to each class. See Separate Handout for Criteria.

Point Allocation Summary:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>150</td>
</tr>
<tr>
<td>Article Presentation</td>
<td>50</td>
</tr>
<tr>
<td>Two Exams</td>
<td>200</td>
</tr>
<tr>
<td>Lab Component</td>
<td>100</td>
</tr>
<tr>
<td>Total Points In Course</td>
<td>500</td>
</tr>
</tbody>
</table>

Course Grading Scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100 – 90%</td>
</tr>
<tr>
<td>B</td>
<td>89.9 – 80%</td>
</tr>
<tr>
<td>C</td>
<td>79.9 – 70%</td>
</tr>
<tr>
<td>D</td>
<td>69.9 – 60%</td>
</tr>
<tr>
<td>F</td>
<td>≤ 59.9%</td>
</tr>
</tbody>
</table>

Academic Integrity: Academic integrity is expected from each and every student. Specifically, I expect students to avoid plagiarism (self and other), complete their work independently, and reference properly the writings and ideas of others. Class and article presentations should be an original piece of work and not a modification of any prior course assignment or any other previous work for an instructor. For further information, please refer to the policies on academic misconduct in the LSU
Tentative Schedule:

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 27</td>
<td>Introduction - Review Syllabus, Expectations, Article Sign Ups/Lab Component Discussion (Historical Aspects of Exercise Physiology)</td>
<td>1</td>
</tr>
<tr>
<td>Aug 29</td>
<td>Nervous System</td>
<td>2</td>
</tr>
<tr>
<td>Sept 3</td>
<td>Skeletal-Articular System</td>
<td>3</td>
</tr>
<tr>
<td>Sept 5</td>
<td>The Muscular System</td>
<td>4</td>
</tr>
<tr>
<td>Sept 10</td>
<td>The Muscular System (Control of Muscle Mass)</td>
<td>5</td>
</tr>
<tr>
<td>Sept 12</td>
<td>Fatigue Processes</td>
<td>6</td>
</tr>
<tr>
<td>Sept 17</td>
<td>Autonomic Nervous System</td>
<td>7</td>
</tr>
<tr>
<td>Sept 19</td>
<td>The Respiratory System</td>
<td>8</td>
</tr>
<tr>
<td>Sept 24</td>
<td>CVS: Design and Control</td>
<td>9</td>
</tr>
<tr>
<td>Sept 26</td>
<td>CVS: Cardiac Function</td>
<td>10</td>
</tr>
<tr>
<td>Oct 1</td>
<td>Organization and Control of Circulation to Skeletal Muscle</td>
<td>11</td>
</tr>
<tr>
<td>Oct 3</td>
<td>The GI System</td>
<td>12</td>
</tr>
<tr>
<td>Oct 8</td>
<td>Review Class</td>
<td>None</td>
</tr>
<tr>
<td>Oct 10</td>
<td>EXAM 1</td>
<td></td>
</tr>
<tr>
<td>Oct 15</td>
<td>The Metabolic Systems: Control of ATP Synthesis</td>
<td>13</td>
</tr>
<tr>
<td>Oct 17</td>
<td>CHO Metabolism</td>
<td>14</td>
</tr>
<tr>
<td>Oct 22</td>
<td>Lipid Metabolism/The Metabolic Systems: Lipid and CHO Metabolism</td>
<td>15-16</td>
</tr>
<tr>
<td>Oct 24</td>
<td>No Class: Out of Class Assignment</td>
<td></td>
</tr>
<tr>
<td>Oct 29</td>
<td>Protein and AA Metabolism in Muscle</td>
<td>17</td>
</tr>
<tr>
<td>Oct 31</td>
<td>Mitochondrial Biogenesis Induced By Endurance Training</td>
<td>18</td>
</tr>
<tr>
<td>Nov 5</td>
<td>The Endocrine System</td>
<td>19</td>
</tr>
<tr>
<td>Nov 7</td>
<td>No Class: Fall Break</td>
<td></td>
</tr>
<tr>
<td>Nov 12</td>
<td>Exercise and the Immune System</td>
<td>20</td>
</tr>
<tr>
<td>Nov 14</td>
<td>The Body Fluid/The Renal System</td>
<td>21-22</td>
</tr>
<tr>
<td>Nov 19</td>
<td>Heat and Cold</td>
<td>23</td>
</tr>
<tr>
<td>Nov 21</td>
<td>Hypoxia</td>
<td>24</td>
</tr>
<tr>
<td>Nov 26</td>
<td>No Class: Out of Class Assignment</td>
<td></td>
</tr>
<tr>
<td>Nov 28</td>
<td>No Class: Thanksgiving</td>
<td></td>
</tr>
<tr>
<td>Dec 3</td>
<td>Hyperbaria/Microgravity and Bed Rest</td>
<td>25-26</td>
</tr>
<tr>
<td>Dec 5</td>
<td>Genomics and Proteomics</td>
<td>27</td>
</tr>
<tr>
<td>Dec 9-14</td>
<td>Final Exam Week (Scheduled By The University)</td>
<td></td>
</tr>
</tbody>
</table>
At their February 13, 2014 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the KIN proposals:

- The Committee conditionally approved the proposal to add KIN 3805 pending a revised syllabus that either changes the 20% final sales class project or justifies the reasoning behind it. The Committee felt that this would penalize a student if the class as a whole did not perform as well. Is there any structure to how the group functions for this class project? The syllabus should show how the project is graded, i.e. peer reviews. The Committee also felt that this course was similar to a marketing course and would therefore need a letter of support from the MKT department.

- The Committee conditionally approved the proposal to add KIN 7506 pending a revised syllabus that better details the course evaluation. The syllabus is essentially a contract between the student and the instructor and should be as informative as possible.

- The Committee conditionally approved the proposal to change KIN 7530. The Committee wanted further justification as to why the lab component of the course was being dropped. Since this is a 7000-level course, the department can increase the credit hours and still maintain the lab; this would then allow the course to cover the necessary material. If the department wishes to drop the lab component, then a justification is required. The Committee also requested a syllabus for the course as the proposal is changing the format of the course.

- The Committee conditionally approved the proposals to add KIN 7546 and 7547 pending revised syllabi that adds the out of class expectations. This tells the student how much time is expected outside of class spent on the course. Please see attached for examples.

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastrl@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.
Present Course Description

Title: Sport Strategies and Planning

Semester Hours of Credit: 3

If combination course type, # hrs. of credit for

<table>
<thead>
<tr>
<th>LEC</th>
<th>LAB</th>
<th>SEM</th>
<th>REC</th>
<th>RES</th>
<th>IND</th>
<th>CLIN/PRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Hours Per Week: (Indicate hours in appropriate course type.)

<table>
<thead>
<tr>
<th>LEC</th>
<th>LAB</th>
<th>SEM</th>
<th>REC</th>
<th>RES</th>
<th>IND</th>
<th>CLIN/PRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Weekly Contact Hours: 3

Grading System: Letter Grade _x_

Course Description: Include course number, title, etc., exactly as it appears in the General Catalog

3801 Sport Strategies and Planning (3) Principles and procedures involved with strategies and planning of professional and intercollegiate athletics.

Proposed Course Description

Title: Sport Strategies and Planning

Short Title: S P R T S T R A T E G Y & P L A N

Semester Hours of Credit: 3

If combination course type, # hrs. of credit for

<table>
<thead>
<tr>
<th>LEC</th>
<th>LAB</th>
<th>SEM</th>
<th>REC</th>
<th>RES</th>
<th>IND</th>
<th>CLIN/PRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Hours Per Week: (Indicate hours in appropriate course type.)

<table>
<thead>
<tr>
<th>LEC</th>
<th>LAB</th>
<th>SEM</th>
<th>REC</th>
<th>RES</th>
<th>IND</th>
<th>CLIN/PRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Weekly Contact Hours: 3

Grading System: Letter Grade _x_

Course Description: Include course number, title, etc., exactly as it appears in the General Catalog

3801 Sport Strategies and Planning (3) Prereq.: KIN 2513. Principles and procedures involved with strategies and planning of professional and intercollegiate athletics.

Has this change been discussed with and approved by all departments/colleges affected?

- Yes ()
- No ()
- N/A (X)

Is this course included in any curricula, concentrations, or minors?

- Yes (X)
- No ()

If yes, please list on a separate sheet.

Is this course a prerequisite or corequisite for other courses?

- Yes ()
- No (X)

If yes, list courses; use separate sheet.

Is this course on the General Education list?

- Yes ()
- No (X)

JUSTIFICATION/EXPLANATION: Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS

- **Department Faculty Approval Date**: 10/4/13

 - **Melinda Selmon**, Chair (Date)

- **Graduate Dean's Signature**:

 - **Casey Bennett**, (Date)

- **College Faculty Approval Date**: 1-30-14

 - **Chair, FS C & C Committee** (Date)

- **College Contact**: ckennedy@lsu.edu

- **College Contact E-mail**: cbenne5@lsu.edu
Justification for adding the prerequisite of KIN 2513 to KIN 3801 (Sport Strategies and Planning).

Kin 2513 is an introductory professional development course in Sport Administration and thus having this course as a prerequisite will be beneficial to the students as they engage in the learning experiences in KIN 3801.

This course is part of the Sport Administration curriculum in the Sport Commerce and Sport Administration concentration areas.
Request for CHANGING an Existing Course

Present Course Description

<table>
<thead>
<tr>
<th>Semester Hours of Credit</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>If combination course type, # hrs. of credit for lecture:</td>
<td>lab/sem/rec:</td>
</tr>
<tr>
<td>Repeat Credit Max (if repeatable)</td>
<td></td>
</tr>
<tr>
<td>Graduate Credit?</td>
<td>Yes: X No:</td>
</tr>
<tr>
<td>Credit will not be given for this course and:</td>
<td></td>
</tr>
<tr>
<td>Contact Hours Per Week: (Indicate hours in appropriate course type.)</td>
<td></td>
</tr>
<tr>
<td>LEC</td>
<td>LAB</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Weekly Contact Hours:</td>
<td>3</td>
</tr>
<tr>
<td>Grading System: Letter Grade:</td>
<td>x</td>
</tr>
<tr>
<td>Course Description:</td>
<td>include course number, title, etc., exactly as it appears in the General Catalog</td>
</tr>
</tbody>
</table>

3802 Program and Event Management (3) Basic concepts pertaining to the production of amateur, professional and recreational sporting events.

Proposed Course Description

<table>
<thead>
<tr>
<th>Semester Hours of Credit</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>If combination course type, # hrs. of credit for lecture:</td>
<td>lab/sem/rec:</td>
</tr>
<tr>
<td>Repeat Credit Max (if repeatable)</td>
<td></td>
</tr>
<tr>
<td>Graduate Credit?</td>
<td>Yes: X No:</td>
</tr>
<tr>
<td>Credit will not be given for this course and:</td>
<td></td>
</tr>
<tr>
<td>Contact Hours Per Week: (Indicate hours in appropriate course type.)</td>
<td></td>
</tr>
<tr>
<td>LEC</td>
<td>LAB</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Weekly Contact Hours:</td>
<td>3</td>
</tr>
<tr>
<td>Grading System: Letter Grade:</td>
<td>x</td>
</tr>
<tr>
<td>Course Description:</td>
<td>include course number, title, etc., exactly as it appears in the General Catalog</td>
</tr>
</tbody>
</table>

3802 Program and Event Management (3) Prereq.: KIN 2513. Basic concepts pertaining to the production of amateur, professional and recreational sporting events.

Has this change been discussed with and approved by all departments/colleges affected? Yes () No () N/A (X)
Is this course included in any curricula, concentrations, or minors? Yes (X) No () If yes, please list on a separate sheet.
Is this course a prerequisite or corequisite for other courses? Yes () No (X) If yes, list courses; use separate sheet.
Is this course on the General Education list? Yes () No (X)

JUSTIFICATION/EXPLANATION: Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS:

<table>
<thead>
<tr>
<th>Department Faculty Approval Date</th>
<th>10/4/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melinda Solomon (Signature)</td>
<td>10/4/13</td>
</tr>
<tr>
<td>(Date)</td>
<td></td>
</tr>
<tr>
<td>Graduate Dean's Signature</td>
<td>Casey Bennett</td>
</tr>
<tr>
<td>(Date)</td>
<td></td>
</tr>
<tr>
<td>College Contact:</td>
<td>cbenne5@lsu.edu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College Faculty Approval Date</th>
<th>11/30/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jennifer Curry (Signature)</td>
<td>11/30/14</td>
</tr>
<tr>
<td>(Date)</td>
<td></td>
</tr>
<tr>
<td>Chair, FS C & C Committee</td>
<td>College Dean's Signature</td>
</tr>
<tr>
<td>(Date)</td>
<td>2/13/14</td>
</tr>
<tr>
<td>Academic Affairs Approval</td>
<td>(Date)</td>
</tr>
<tr>
<td>(Date)</td>
<td>2/18/14</td>
</tr>
</tbody>
</table>
JUSTIFICATION:

Justification for adding the prerequisite of KIN 2513 to KIN 3802 (Event Management).

Kin 2513 is an introductory professional development course in Sport Administration and thus having this course as a prerequisite will be beneficial to the students as they engage in the learning experiences in KIN 3802.

This course is part of the Sport Administration curriculum.
Request for CHANGING an Existing Course

Department: Mech & Ind Engineering College: Engineering
Course Rubric and #: ME 2543 Date: 1/30/14

Present Course Description
Title: Simulation Methods for Mechanical Engineers
Semester Hours of Credit: 3
If combination course type, # hrs. of credit for lecture: lab/sem/rec: ____________
Repeat Credit Max (if repeatable): X
Graduate Credit? Yes: ___ No: ___
Credit will not be given for this course and: ____________
Contact Hours Per Week: (Indicate hours in appropriate course type.)
LEC __ X__ BRE __ SEM __ REC __ RES/IND __ CLIN/PRACT __
Total Weekly Contact Hours: ___ 3 ___
Grading System: Letter Grade: X Pass/Fail: ___
Course Description: Include course number, title, etc., exactly as it appears in the General Catalog.
2543 Simulations Methods for Mechanical Engineers (3)
Prereq.: credit or registration in MATH 2090. Computer-based problem solving techniques for mechanical engineering; numeric linear algebra and solution of ordinary differential equations; use of computers in simulations of mechanical engineering systems.

Proposed Course Description
Title: Simulation Methods for Mechanical Engineers
Short Title: SIM METH FOR ME
Semester Hours of Credit: 3
If combination course type, # hrs. of credit for lecture: lab/sem/rec: ____________
Repeat Credit Max (if repeatable): X
Graduate Credit? Yes: ___ No: ___
Credit will not be given for this course and: ____________
Contact Hours Per Week: (Indicate hours in appropriate course type.)
LEC __ X__ BRE __ SEM __ REC __ RES/IND __ CLIN/PRACT __
Total Weekly Contact Hours: ___ 3 ___
Grading System: Letter Grade: X Pass/Fail: ___
Course Description: Include course number, title, etc., exactly as it appears in the General Catalog.
2543 Simulations Methods for Mechanical Engineers (3)
Prereq.: credit or registration in MATH 2070 or 2090. Computer-based problem solving techniques for mechanical engineering; numeric linear algebra and solution of ordinary differential equations; use of computers in simulations of mechanical engineering systems.

THESE QUESTIONS MUST BE ANSWERED COMPLETELY AND ACCURATELY OR PROPOSAL WILL BE RETURNED.
Has this change been discussed with and approved by all departments/colleges affected? Yes () No () N/A ()
Is this course included in any curricula, concentrations, or minors? Yes (x) No () If yes, please list on a separate sheet.
Is this course a prerequisite or corequisite for other courses? Yes (x) No () If yes, list courses; use separate sheet.
Is this course on the General Education list? Yes () No (x)

JUSTIFICATION/EXPLANATION: Use separate sheet.
Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS:
Department Faculty Approval Date: 12/17/13
Department Chair's Signature: ____________________________ (Date)
Graduate Dean's Signature: ____________________________ (Date)
College Faculty Approval Date: 2/10/14
College Dean's Signature: ____________________________ (Date)
Chair, FS C & C Committee: ____________________________ (Date)
Academic Affairs Approval: ____________________________ (Date)
JUSTIFICATION

The Mechanical Engineering Faculty voted to change the requirement from MATH 2090 Elementary Differential Equations and Linear Algebra (4) to MATH 2070 Mathematical Methods in Engineering (4). MATH 2070 covers needed subjects like Fourier series that are no longer covered in MATH 2090.

This course is required for the BS ME degree.

This course is a prerequisite for ME 3834 and ME 4133.
Request for CHANGING an Existing Course

Department
Mech & Ind Engineering
Course Rubric and #
ME 3143
College
Engineering
Date
1/30/14

Present Course Description

Title
System Dynamics and Modeling

Semester Hours of Credit
3

If combination course type, # hrs. of credit for lecture: lab/sem rec: repeat credit max (if repeatable):
Graduate Credit? Yes:
Credit will not be given for this course and:

Contact Hours Per Week: (Indicate hours in appropriate course type.)
LEC
LAB
SEM
REC
RES/IND
CLIN/PRACT

Total Weekly Contact Hours: 3

Grading System: Letter Grade X Pass/Fail

Proposed Course Description

Title
System Dynamics and Modeling

Short Title
SYST DYNAMICS & MODL

Semester Hours of Credit
3

If combination course type, # hrs. of credit for lecture: lab/sem rec: repeat credit max (if repeatable):
Graduate Credit? Yes:
Credit will not be given for this course and:

Contact Hours Per Week: (Indicate hours in appropriate course type.)
LEC
LAB
SEM
REC
RES/IND
CLIN/PRACT

Total Weekly Contact Hours: 3

Grading System: Letter Grade X Pass/Fail

Course Description:
3143 System Dynamics and Modeling (3) Prereq.: ME 3133, grade of “C” or better in MATH 2090 and credit or registration in ME 3834. Bond graph and lumped-parameter techniques for deriving dynamic equations of physical systems; time and frequency domain analyses, numerical simulation of mechanical systems.

THESE QUESTIONS MUST BE ANSWERED COMPLETELY AND ACCURATELY OR PROPOSAL WILL BE RETURNED.

Has this change been discussed with and approved by all departments/colleges affected? Yes () No () N/A (x)
Is this course included in any curricula, concentrations, or minors? Yes (x) No () If yes, please list on a separate sheet.
Is this course a prerequisite or corequisite for other courses? Yes (x) No () If yes, list courses; use separate sheet.
Is this course on the General Education list? Yes () No (x)

JUSTIFICATION/EXPLANATION: Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS:

Department Faculty Approval Date 12/17/13
Department Chair's Signature
(Date)
Graduate Dean's Signature
(Date)
College Contact:
(Please print name.)
College Contact E-mail:

College Faculty Approval Date 2/10/14
College Dean's Signature
(Date)
Chair, FS C & C Committee
(Date)
Academic Affairs Approval
(Date)
JUSTIFICATION

The Mechanical Engineering Faculty voted to change the requirement from MATH 2090 Elementary Differential Equations and Linear Algebra (4) to MATH 2070 Mathematical Methods in Engineering (4). MATH 2070 covers needed subjects like Fourier series that are no longer covered in MATH 2090.

This course is required for the BS ME degree.

This course is a prerequisite for ME 3603.
Request for CHANGING an Existing Course

Department: Mech & Ind Engineering
Course Rubric and #: ME 3834

Date: 1/30/14

College: Engineering

Present Course Description

Title: Fluid Mechanics

Semester Hours of Credit: 4

If combination course type, # hrs. of credit for lecture: __________
If combination course type, # hrs. of credit for lab/sem/rec: __________
Repeat Credit Max (if repeatable): __________
Graduate Credit? Yes: ______ No: ______
Credit will not be given for this course and: __________
Contact Hours Per Week: (Indicate hours in appropriate course type.)
LEC _____ LAB _____ SEM _____ REC _____ RES/IND _____ CLIN/PRACT _____
Total Weekly Contact Hours: _____
Grading System: Letter Grade X Pass/Fail ______

Course Description:
Include course number, title, etc., exactly as it appears in the General Catalog:

3834 Fluid Mechanics (4) Prereq.: ME 2334, ME 2543, ME 3133; MATH 2057 and a grade of "C" or better in MATH 2090. Statics, kinematics and dynamics of continuum liquids and gases; conservation laws (mass, momentum, energy); integral analysis; differential analysis and similarity; internal and external viscous flows; compressible flows.

Proposed Course Description

Title: Fluid Mechanics

Short Title: FLUID MECHANICS

Semester Hours of Credit: 4

If combination course type, # hrs. of credit for lecture: __________
If combination course type, # hrs. of credit for lab/sem/rec: __________
Repeat Credit Max (if repeatable): __________
Graduate Credit? Yes: ______ No: ______
Credit will not be given for this course and: __________
Contact Hours Per Week: (Indicate hours in appropriate course type.)
LEC _____ LAB _____ SEM _____ REC _____ RES/IND _____ CLIN/PRACT _____
Total Weekly Contact Hours: _____
Grading System: Letter Grade X Pass/Fail ______

Course Description:
Include course number, title, etc., exactly as it appears in the General Catalog:

3834 Fluid Mechanics (4) Prereq.: ME 2334, ME 2543, ME 3133; MATH 2057 and a grade of "C" or better in MATH 2090. Statics, kinematics and dynamics of continuum liquids and gases; conservation laws (mass, momentum, energy); integral analysis; differential analysis and similarity; internal and external viscous flows; compressible flows.

THESE QUESTIONS MUST BE ANSWERED COMPLETELY AND ACCURATELY OR PROPOSAL WILL BE RETURNED.

Has this change been discussed with and approved by all departments/colleges affected? Yes () No () N/A (x)
Is this course included in any curricula, concentrations, or minors? Yes (x) No ()
If yes, please list on a separate sheet.
Is this course a prerequisite or corequisite for other courses? Yes (x) No ()
If yes, list courses; use separate sheet.
Is this course on the General Education list? Yes () No (x)

JUSTIFICATION/EXPLANATION: Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS:
Department Faculty Approval Date 12/17/13
Department Chair’s Signature (Date) 1/3/14

College Faculty Approval Date 1/30/14
College Dean’s Signature (Date) 1/3/14

Graduate Dean’s Signature (Date)

College Contact:
(Please print name.)

College Contact E-mail:

Academic Affairs Approval (Date) 2/18/14
JUSTIFICATION

The Mechanical Engineering Faculty voted to change the requirement from MATH 2090 Elementary Differential Equations and Linear Algebra (4) to MATH 2070 Mathematical Methods in Engineering (4). MATH 2070 covers needed subjects like Fourier series that are no longer covered in MATH 2090.

This course is required for the BS ME degree.

This course is a prerequisite for ME 4433 and a co-requisite for ME 3143.
Request for CHANGING an Existing Course

Department
Mech & Ind Engineering

Course Rubric and #
ME 4183

College
Engineering

Date
1/30/14

Present Course Description

Title
Theory and Design of Mechanical Control Systems

Semester Hours of Credit

<table>
<thead>
<tr>
<th>Credit for</th>
<th>lab/sem</th>
<th>rec</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Repeat Credit Max (if repeatable)
X

Graduate Credit?
Yes:
No:

Credit will not be given for this course and:

Contact Hours Per Week: (Indicate hours in appropriate course type.)

<table>
<thead>
<tr>
<th>LEC</th>
<th>LAB</th>
<th>SEM</th>
<th>REC</th>
<th>RES/IND</th>
<th>CLIN/PRAC</th>
</tr>
</thead>
</table>

Total Weekly Contact Hours:
3

Grading System:
Letter Grade X
Pass/Fail

Course Description:
Include course number, title, etc., exactly as it appears in the General Catalog

4183 Theory and Design of Mechanical Control Systems (3)
Prereq.: grade of "C" or better in MATH 2090; ME 3143 and credit or registration in ME 3603. Basic principles, concepts, characteristics and performance of linear feedback control systems; stability of linear systems; frequency response methods; compensator design in the frequency domain.

Proposed Course Description

Title
Theory and Design of Mechanical Control Systems

Semester Hours of Credit

<table>
<thead>
<tr>
<th>Credit for</th>
<th>lab/sem</th>
<th>rec</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Repeat Credit Max (if repeatable)
X

Graduate Credit?
Yes:
No:

Credit will not be given for this course and:

Contact Hours Per Week: (Indicate hours in appropriate course type.)

<table>
<thead>
<tr>
<th>LEC</th>
<th>LAB</th>
<th>SEM</th>
<th>REC</th>
<th>RES/IND</th>
<th>CLIN/PRAC</th>
</tr>
</thead>
</table>

Total Weekly Contact Hours:
3

Grading System:
Letter Grade X
Pass/Fail

Course Description:
Include course number, title, etc., exactly as it appears in the General Catalog

4183 Theory and Design of Mechanical Control Systems (3)
Prereq.: grade of "C" or better in MATH 2070 or 2090; ME 3143 and credit or registration in ME 3603. Basic principles, concepts, characteristics and performance of linear feedback control systems; stability of linear systems; frequency response methods; compensator design in the frequency domain.

JUSTIFICATION/EXPLANATION: Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS:

Department Faculty Approval Date
12/17/13

Department Chair’s Signature
(Date)

Graduate Dean’s Signature
(Date)

College Contact:
(Please print name.)

College Contact E-mail:

College Faculty Approval Date
2/10/14

College Dean’s Signature
(Date)

Chair, FS C & C Committee
(Date)

Academic Affairs Approval
(Date)
JUSTIFICATION

The Mechanical Engineering Faculty voted to change the requirement from **MATH 2090 Elementary Differential Equations and Linear Algebra (4)** to **MATH 2070 Mathematical Methods in Engineering (4)**. MATH 2070 covers needed subjects like Fourier series that are no longer covered in MATH 2090.

This course is required for the BS ME degree.

This course is a prerequisite for ME 4621 and a co-requisite for ME 4201.
REQUEST FOR ADDITION OF NEW COURSE

Department: Mechanical and Industrial Engineering
Date: 2/10/14

College: __

PROPOSED COURSE

Short Title: PROJECT MGT
Rubric & No.: IE 4113
Title: Project Management

COURSE CREDIT

Graduate Credit: X YES
NO

Semester Hours of Credit: 3

If course may be repeated for credit (i.e. special topics), course may be taken for a max. of ___ credit hours.

Credit will not be given for this course and: __________

GRADING

Final Exam: X YES
NO
Grading System: X Letter Grade
Pass/Fail

(Course will not hold a final exam during examination week.)

COURSE TYPE

(Indicate hours in the appropriate course type)

LEC/REC LEC/SEM X LEC LAB LEC/LAB SEM CLIN/PRACT RES/IND

Maximum enrollment per section: ___

CATALOG TEXT

Concise catalog statement exactly as you wish it to appear in the LSU General Catalog.

IE 4113 Information Technology Project Management (3) See ISDS 4113.

BUDGET IMPACT

If this course is approved, will additional staff be needed? X YES
NO

Will additional space, equipment, special library materials or other major expense be involved? X YES
NO

(If answer to either question above is "yes", attach explanation.)

Academic Affairs Approval: (date)

ATTACHMENTS

ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria

(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students.)

APPROVALS

Department Faculty Approval: 1/10/2014

College Faculty Approval: 9/12/13

Department Chair's Signature: ____________________________

(date)

Graduate Dean's Signature (for 4000 level and above): 2/17/14

(date)

College Contact: ____________________________

(Please print name)

College Contact E-mail: ____________________________

College Dean's Signature: ____________________________

(date)

Chair, F.S.C.S. Committee: ____________________________

(date)

Academic Affairs Approval: ____________________________

(date)
JUSTIFICATION

This new course is required because the Department of Construction Management has canceled CM 2141 and their new course does not meet our needs. We are cross listing this course with ISDS to allow for best utilization of faculty resources.
IE 4113: Project Management
Spring 2***

FACULTY:
Dr.
Office:
Email:
Phone:

OFFICE HOURS:
T & Th 9:00 am to 11:00 am (Central Standard Time), available by phone and email. Emails will be replied within 24 hours of received.

CATALOG DESCRIPTION:
IE 4113 Project Management (3): ISDS 3100 or consent from instructor. Topics on effectively managing industrial engineering or information technology projects including: setting goals and objective; work breakdown structures; project scheduling; managing project resources; evaluation and review; incentives and qualitative analysis; project accounting; extensive use of cases involving hands-on computer analyses with state-of-the-art project management software.

COURSE DESCRIPTION AND GOALS:
This course covers basic concepts and skills for effective project management, including project management tools/techniques and the socio-cultural aspects of the project management process. Technical topics include project selection, project scope statements, work breakdown structure (WBS), estimating, scheduling resources, progress evaluation, managing risk, agile project management, and project audit/closure. Socio-cultural topics include team development, team processes (communication, conflict resolution, negotiation), and personality types in teams, team leadership, stakeholder management, and ethical issues in projects. Assignments will include application of project planning and technical skills and analysis of project cases. Concepts and skills will be taught through a combination of lecture and a “learn-by-doing” approach. MS Project software will be used for some assignments.

COURSE MATERIALS:
- Readings and lecture slides will be available on-line through Moodle.
- MS Project 2010 (or MS Project 2013) will be needed for some assignments. The software will be available for download via the Microsoft Dreamspark Program.

COURSE ASSIGNMENTS AND ASSESSMENTS:
All assignments must be completed in order to fulfill course requirements. Due dates for all assignments appear in this syllabus. The assessment will be based on an individual student’s demonstration of fulfilling the course objectives as set out in the syllabus. The course assignments include: 2 in-class exams, a final exam, 10 exercises and 2 assignments.

GRADING:
All grades will be recorded in the gradebook on Moodle. You may check your scores at any time by accessing “Grade” under the Administration section. A total of 100 points are available in this course. Graded assignments and their weights are as follows:

<table>
<thead>
<tr>
<th>Course Requirements</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (2)</td>
<td>50%, 25% each exam</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Exercises (10)</td>
<td>10%</td>
</tr>
<tr>
<td>Assignments (2)</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

IE 413- Project Management	 Page 1 of 3
Department Policies:

1. If you must miss an assignment, if possible please contact me before the assignment is due. You must present documentation for your absence in accordance with university policy to be eligible to make up the assignment. Your assignment will be rescheduled ideally within a week.
2. Participation and questions are encouraged. They may positively influence grading decisions in borderline cases.
3. Academic dishonesty will not be tolerated and can result in probation or dismissal. It will be dealt with according to university regulations and policy. It is each student’s responsibility to understand these regulations.

Course Policies:

1. Students are required to complete the reading assignments on time.
2. In team assignments, all team members must participate.
3. Do not be shy to ask even the simplest questions because that is the only way to guarantee an explanation.
4. Do not hesitate to contact me regarding any matter pertaining to this course. Especially if you are having a problem with any part of the course or its prerequisite, please bring it to my attention as soon as possible so I can give you the assistance you need.
5. Out of class time expectations- As a general policy, for each hour you are in class, you (the student) should plan to spend at least two hours on preparing for the next class and completing homework, laboratory assignments (software assignments), reading or writing assignments for the class. Since this course is for three credit hours, you should expect to spend around six hours outside of class each week.

Other Statements are at:
<table>
<thead>
<tr>
<th>Class</th>
<th>Topic</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Module 1: Introduction to Project Management</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Course Introduction</td>
<td>Syllabus</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Project Management</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Project Management Institute (PMI) and certification, Project Success/Failure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 2: Project Selection – Strategic Alignment, Feasibility, Project Portfolios</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Organization Strategy and Project Selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 3: Project Planning</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Defining the Project- project score and priorities</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Defining the Project- Work Breakdown Structures (WBS)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Activity Sequencing</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Methods for Estimating Project Times and Costs</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Exam #1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 4: Scheduling, Resource Leveling, Project Reporting/Control, Risk Management</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Scheduling- project network computations</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ethical Dilemma- personnel issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scheduling- resource leveling, cost analysis for schedule “crashing”</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Managing Project Control</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ethical Dilemma- project status reporting, communication issues</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Managing Project Risk</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Escalation of Commitment</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Exam #2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 5: Project Teams, Stakeholders, Leadership, Negotiation/Persuasion</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Team Exercise</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Ethical Dilemma- Missent Bid Information, personality types and team diversity</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Managing Project Teams</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Managing Project Teams</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Ethical Dilemma- Stakeholder Management</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Ethical Dilemma- team member, drug testing, persuasion skills</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Negotiation- good vs. bad negotiation, persuasion/negotiation strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 6: Special Topics- Agile PM, Project Audit/Closure</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Introduction to Agile PM</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Project Audit & Project Closure</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>
REQUEST FOR ADDITION OF NEW COURSE

Department: Kinesiology
Atlantic College of Education

PROPOSED COURSE

Rubric & No.: KIN 7506
Title: Praxis in Pedagogy

COURSE CREDIT

Graduate Credit: X YES NO

Semester Hours of Credit: 3, 6, 9

If course may be repeated for credit (i.e. special topics), course may be taken for a max. of ___ credit hours.

Credit will not be given for this course and: ____________________________

GRADING

Final Exam: X YES NO Grading System: Letter Grade X Pass/Fail

COURSE TYPE

Indicate hours in the appropriate course type

Maximum enrollment per section: 25

CATALOG TEXT

7506 Praxis in Pedagogy (3, 6, 9) Practical application of pedagogical techniques and methods in a physical education or physical education-related setting; students work in a professional capacity for 10-30 hours per week during the semester under the guidance of an on-site supervisor and/or faculty member.

BUDGET IMPACT

If this course is approved, will additional staff be needed? X YES NO

Will additional space, equipment, special library materials or other major expense be involved? X YES NO

ATTACHMENTS

ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria

APPROVALS

Department Faculty Approval 10/4/13

College Faculty Approval 1-30-14

Academic Affairs Approval

Department Chair's Signature

College Dean's Signature

Chair, FS C&C Committee

College Contact: Casey Bennett

College Contact E-mail: cbenne5@lsu.edu
KIN 7506 Course Proposal

This course will be a required capstone course for students pursuing an alternate certification in K-12 Health and Physical Education. It will provide students in this area the opportunity to complete their internship/student teaching experience for graduate-level credit. This course will not duplicate other courses on campus and will be specifically for students pursuing the alternate teaching certification.

Justification for waiving the final exam:

KIN 7506 will not require a final exam. This course is a practicum course and students will receive either a “Pass” or “Fail” grade based upon their ability to apply pedagogical strategies and content in a practical setting.
KIN 7506
Practicum in Pedagogy

Instructor:
Office Location:
Office Hours:
E-mail Address:
Course Location: On-Site
Course Time:

Course Description: KIN 7506 Practicum in Pedagogy (3,6,9). Practical application of pedagogical techniques and methods in a physical education or physical education-related settings; students work in a professional capacity for 10-30 hrs. per week during the semester under the guidance of an on-site supervisor and/or faculty member.

REQUIRED TEXT:

RECOMMENDED TEXTS:

COURSE OBJECTIVES:

Upon completion of this course students will be able to:

- Design and implement short term plans that are linked to program and instructional goals as well as a variety of student needs (NASPE Standard 3.1).
- Develop and implement appropriate (e.g. measurable, developmentally appropriate, performance based) goals and objectives aligned with local, state, and/or national standards (NASPE Standard 3.2).
- Design and implement content that is aligned with lesson objectives (NASPE Standard 3.3).
- Plan for and manage resources to provide active, fair, and equitable learning experiences (NASPE Standard 3.4).
- Plan and implement progressive and sequential instruction that addresses the diverse needs of all students (NASPE Standard 3.6).
- Implement effective demonstrations, explanations, and instructional cues and prompts to link physical activity concepts to appropriate learning experiences (NASPE Standard 4.2).
- Utilize managerial rules, routines, and transitions to create and maintain a safe and effective learning environment (NASPE Standard 4.5).
- Utilize the reflective cycle to implement change in teacher performance, student learning, and/or instructional goals and decisions (NASPE Standard 5.3).
- Demonstrate behaviors that are consistent with the belief that all students can become physically educated individuals (NASPE Standard 6.1).
- Demonstrate behaviors that are consistent with the professional ethics of highly qualified teachers (NASPE Standard 6.3).
COURSE EVALUATION

Student Teachers/Interns will be evaluated by either the University Supervisor or On-Site Supervisor using the rubric below.

Teacher Candidate Grading Rubric Pass Fail

<table>
<thead>
<tr>
<th>Teacher Candidate</th>
<th>Date</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Supervisor: Name</td>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

Mid-semester Final

<table>
<thead>
<tr>
<th>Score</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge, Skills, and Dispositions as evidenced by the Candidate Evaluation Instrument</td>
<td>Received overall score of Exceeds Expectations on the Candidate Evaluation Rubric</td>
<td>Received overall score of Meets Expectations on the Candidate Evaluation Rubric</td>
<td>Received overall score of Approaching Expectations on the Candidate Evaluation Rubric</td>
<td>Failed to achieve a minimum of 180 teaching hours as required for licensure (below 40 hrs. mid-semester)</td>
</tr>
<tr>
<td>Clinical Placement Attendance</td>
<td>Achieved beyond 220 teaching hours (beyond 80 hrs. – mid-semester)</td>
<td>Achieved between 191-200 teaching hours (60-79 hrs. – mid-semester)</td>
<td>Achieved between 180-190 teaching hours (40 - 59 hrs. mid-semester)</td>
<td></td>
</tr>
<tr>
<td>Professionalism</td>
<td>Received overall score of Exceeds Expectations (score of 3) on the Professionalism domain on the Candidate Evaluation Rubric</td>
<td>Received overall score of Meets Expectations (score of 2) on the Professionalism domain on the Candidate Evaluation Rubric</td>
<td>Received overall score of Approaching Expectations (score of 1) on the Professionalism domain on the Candidate Evaluation Rubric</td>
<td></td>
</tr>
<tr>
<td>Contribution to Cohort Meetings</td>
<td>Score</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demonstrated excellent preparation for and effectively contributed to discussions in cohort meetings</td>
<td>Demonstrated acceptable preparation for and contribution to discussions in cohort meetings</td>
<td>Demonstrated limited preparation for and little contribution to discussions in cohort meetings</td>
</tr>
<tr>
<td>Reflective Practice (lesson reflections, weekly reflections, self-evaluations, video analyses, classroom management plans, and outside observations assignments)</td>
<td></td>
<td>Demonstrated a refined ability to identify and analyze teaching strategies, connect theory to practice, and apply findings to future instructional situations</td>
<td>Demonstrated the ability to identify and analyze teaching strategies, connect theory to practice, and apply findings to future instructional situations</td>
<td>Demonstrated a limited ability to identify and analyze teaching strategies, connect theory to practice, and apply findings to future instructional situations</td>
</tr>
<tr>
<td>Impact on Student Learning (formal and informal assessments including lesson plans, unit plans, etc.)</td>
<td></td>
<td>Demonstrated a refined ability to use the results of multiple assessments to plan, guide, and modify instruction, classroom environment, and the assessment process resulting in a positive impact on student learning</td>
<td>Demonstrated the ability to use the results of multiple assessments to plan, guide, and modify instruction, classroom environment, and the assessment process resulting in a positive impact on student learning</td>
<td>Demonstrated a limited ability to use the results of multiple assessments to plan, guide, and modify instruction, classroom environment, and the assessment process resulting in a positive impact on student learning</td>
</tr>
<tr>
<td>Practicum Portfolio Requirements</td>
<td></td>
<td>Portfolio was current and available at all times, and included all required elements, was free of errors and well organized</td>
<td>Portfolio was current and available at all times and included all required elements in an organized fashion</td>
<td>Portfolio was incomplete and/or not current and/or lacked organization</td>
</tr>
</tbody>
</table>
Pass/Fail Grading Mid-Semester:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>Score of 3 in five or more competencies; Score of 2 in three competencies; OR</td>
</tr>
<tr>
<td></td>
<td>Score of 1 in two competencies</td>
</tr>
<tr>
<td>Pass with</td>
<td>Score of 1 in one competency and 0 in one competency OR</td>
</tr>
<tr>
<td>Reservations</td>
<td>Score of 0 or 1 in the first competency (Knowledge, Skills, Dispositions)</td>
</tr>
<tr>
<td>Fail</td>
<td>Score of 1 in two competencies and 0 in one competency</td>
</tr>
</tbody>
</table>

Pass/Fail Grading End of Semester:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>Score of 3 in five or more competencies; Score of 2 in three competencies; OR</td>
</tr>
<tr>
<td></td>
<td>Score of 1 in two competencies</td>
</tr>
<tr>
<td>Fail</td>
<td>Score of 1 in one competency and 0 in one competency; Score of 0 or 1 in the first competency (Knowledge, Skills, Dispositions); OR</td>
</tr>
<tr>
<td></td>
<td>Score of 1 in two competencies and 0 in one competency</td>
</tr>
</tbody>
</table>

Hours: _____Observation _______Participation _______Teaching
Tentative Course Outline:

<table>
<thead>
<tr>
<th>WEEKS</th>
<th>TOPIC</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Implementing the Reflective Cycle</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Week 2</td>
<td>Action and Application</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>Week 3</td>
<td>Constructing a Professional Development Plan</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Week 4</td>
<td>Developing Advocacy Skills</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Week 5</td>
<td>Personal Professional Development</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Week 6</td>
<td>Using Community Resources</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>Week 7</td>
<td>Establishing Productive Relationships</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>Week 8</td>
<td>Reducing Liability and Risk</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>Week 9</td>
<td>Decision Making</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>Week 10</td>
<td>Addressing Technology</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>Week 11</td>
<td>Professionalism and Continued Growth</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>Week 12</td>
<td>Creating Your Professional Portfolio</td>
<td>Chapter 12</td>
</tr>
<tr>
<td>Week 13</td>
<td>Creating your Professional Portfolio</td>
<td>Chapter 12</td>
</tr>
<tr>
<td>Week 14</td>
<td>Resume' Construction</td>
<td>N/A</td>
</tr>
</tbody>
</table>
At their February 13, 2014 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the KIN proposals:

- The Committee conditionally approved the proposal to add KIN 3805 pending a revised syllabus that either changes the 20% final sales class project or justifies the reasoning behind it. The Committee felt that this would penalize a student if the class as a whole did not perform as well. Is there any structure to how the group functions for this class project? The syllabus should show how the project is graded, i.e. peer reviews. The Committee also felt that this course was similar to a marketing course and would therefore need a letter of support from the MKT department.

- The Committee conditionally approved the proposal to add KIN 7506 pending a revised syllabus that better details the course evaluation. The syllabus is essentially a contract between the student and the instructor and should be as informative as possible.

- The Committee conditionally approved the proposal to change KIN 7530. The Committee wanted further justification as to why the lab component of the course was being dropped. Since this is a 7000-level course, the department can increase the credit hours and still maintain the lab; this would then allow the course to cover the necessary material. If the department wishes to drop the lab component, then a justification is required. The Committee also requested a syllabus for the course as the proposal is changing the format of the course.

- The Committee conditionally approved the proposals to add KIN 7546 and 7547 pending revised syllabi that adds the out of class expectations. This tells the student how much time is expected outside of class spent on the course. Please see attached for examples.

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastr1@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.
REQUEST FOR ADDITION OF NEW COURSE

Department: Kinesiology
Human Sciences & Education

College: __

Date: 10/4/13

PROPOSED COURSE
Short Title: Exercise Metabolism
Rubric & No.: KIN 7546
Title: Exercise Metabolism

COURSE CREDIT
Graduate Credit: x YES NO

Semester Hours of Credit: 3
(For combination course types only: Lecture Hrs. Lab/Sem/Rec Hrs.
If course may be repeated for credit (i.e. special topics), course may be taken for a max. of _____ credit hours.
Credit will not be given for this course and:

(Indicate rubrics and course numbers)

GRADING
Final Exam: x YES NO
Grading System: x Letter Grade Pass/Fail

(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE
(Indicate hours in the appropriate course type)

LEC/REC LEC/SEM 3 LEC LAB LEC/LAB SEM CLIN/PRACT RES/IND

Maximum enrollment per section: 18 (use integer, e.g. 25 not 20-30)

CATALOG TEXT
(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

7546 Exercise Metabolism (3) Prereq.: KIN 7530. The study of the interactions between metabolism and substrate utilization, and how these factors impact work and exercise performance.

BUDGET IMPACT
If this course is approved, will additional staff be needed? YES x NO
Will additional space, equipment, special library materials or other major expense be involved? YES x NO
(If answer to either question above is "yes" attach explanation.)
Academic Affairs Approval: __________________________ Date: __________

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?
SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria (For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

APPROVALS
Department Faculty Approval 10/4/13
(please print name)

Department Chair’s Signature ________________________ Date: ________________________

College Dean’s Signature (for 4000 level and above) ________________________ Date: ________________________

College Contact: Casey Bennett
(Please print name)
College Contact E-mail: cbenne5@lsu.edu

College Faculty Approval 1-30-14
(please print name)

Jennifer Curry 1-30-14
College Dean’s Signature ________________________ Date: ________________________

Chair, FS C&C Committee 2/18/14
(please print name)

Academic Affairs Approval 2/18/14
(please print name)
JUSTIFICATION FOR KIN 7546 – Exercise Metabolism
This is an advanced course that will enable students to study and learn about the interactions between exercise, the metabolic pathways and substrate utilization. The students will also learn how to transfer their knowledge into the design of a cutting edge research project. Existing courses do not provide this opportunity. It will not duplicate any existing course.
Sorry about that Anna. Yes, KIN 7546 has been offered as a special topics class in the past and has had about 15 students in it. It will be a requirement in the kinesiology degree.

Dee

Anna M Castrillo

From: Dorothy Jacobsen <djacob6@tigers.lsu.edu>
Sent: Monday, February 10, 2014 11:10 AM
To: Anna M Castrillo
Subject: RE: KIN C&C proposals

Has KIN 7546 been offered before? If so, how many students and which semesters?

Anna Castrillo, M.A.
Coordinator
Office of the University Registrar
Louisiana State University
112 Thomas Boyd Hall
Phone: (225)578 4111
Fax: (225)578 5991

From: Dorothy Jacobsen <djacob6@tigers.lsu.edu>
Sent: Friday, February 07, 2014 10:10 AM
To: Anna M Castrillo
Cc: Melinda A Solmon
Subject: FW: KIN C&C proposals

Good morning Anna,
I have attached the information you needed regarding KIN 3805 and KIN 7546.

Please let me know if you need anything else.

Dee
From: Melinda A Solmon [mailto:msolmo1@lsu.edu]
Sent: Wednesday, February 05, 2014 3:41 PM
To: Dorothy Jacobsen; Wanda Hargroder
Subject: FW: KIN C&C proposals

Hi,

Here is news from university C & C--

Melinda A. Solmon, Ph.D.
Roy Paul Daniels Professor and Director
School of Kinesiology
Louisiana State University
Baton Rouge, LA 70803
Phone: 225-578-2639
Fax: 225-578-3680
E-mail: msolmo1@lsu.edu

From: Anna M Castrillo
Sent: Wednesday, February 05, 2014 12:54 PM
To: Melinda A Solmon
Cc: Casey H Bennett
Subject: KIN C&C proposals

Dr. Solmon,

I have reviewed the proposals for KIN and just need a few things before they go to the next C&C meeting:

1. KIN 3805: The justification says this course was taught as a special topics course before, please provide how many students in each semester.
2. KIN 7546: Has this course been offered as a special topics course or is it required in a degree program? Also, the syllabus needs a grading scale included.

Sincerely,

Anna Castrillo, M.A.
Coordinator
Office of the University Registrar
Louisiana State University
112 Thomas Boyd Hall
Phone: (225)578-4111
Fax: (225)578-5991
Catalog Statement:
The study of the interactions between metabolism and substrate utilization, and how these factors impact work and exercise performance.

Text

Course Grade
Your grade will comprised of the following components (please note weighting).

Mid Term Test 30% A=100%-90%
Proposal Paper 30% B=89%-80%
Paper defense 5% C=79%-70%
Questioning others 5% D=69%-60%
Final exam 30% F=59% & below

Proposal Paper and Paper Defense:
The presentations will be a research proposal presentation on an exercise metabolism topic presented to the class. Each student will submit for a grade a paper written as a dissertation/thesis proposal (i.e. Introduction and Methods). The Introduction review must provide enough information to provide the rest of the class enough information to ask intelligent questions. The methods can be ‘pie-in-the-sky’ methods where you can assume that unlimited funds and equipment are available, but you must be able to justify the use of all materials and tests. The paper will be graded on the quality/feasibility of the research idea, your ability to defend the need of the research and the adequacy of the design. Each person on a designated day will undergo a mock thesis proposal meeting with the instructor and the rest of the class serving as the questioning committee. This should last 40 min and each student must turn in a PowerPoint copy of their presentation on their designated day. Each person will be graded on the quality of their presentation and their defense of their project. The other students will be graded on their questioning of the student and on their ability to evaluate their fellow student’s presentation/defense.

Out of Class Expectations
It is expected that the students have read the assigned chapters or pages prior to class for the background necessary to properly participate in the discussion and think critically about the concepts addressed. As a general policy, for each hour you are in class, you (the student) should plan to spend at least two hours preparing for the next class. Since this course is for three credit hours, you should expect to spend around six hours outside of class each week reading or writing assignments for the class.

Class Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Chapter 1. Overview of Exercise Metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chapter 2. Anaerobic Metabolism During Exercise</td>
</tr>
<tr>
<td>Week 2</td>
<td>Chapter 3. Skeletal Muscle Carbohydrate Metabolism During Exercise</td>
</tr>
<tr>
<td>Week 3</td>
<td>Chapter 4. Hepatic Metabolism During Exercise</td>
</tr>
<tr>
<td></td>
<td>Chapter 5. Skeletal Muscle Lactate Transport and Transporters</td>
</tr>
<tr>
<td>Week 4</td>
<td>Chapter 6. Adipose Tissue Lipid Mobilization During Exercise</td>
</tr>
<tr>
<td>Week 5</td>
<td>Chapter 7. Skeletal Muscle Lipid Metabolism During Exercise</td>
</tr>
<tr>
<td>Week 6</td>
<td>Chapter 8. Effect of Exercise on Skeletal Muscle Protein and Amino Acid Metabolism in Humans</td>
</tr>
<tr>
<td>Week 7</td>
<td>Chapter 9. Metabolic Factors in Fatigue</td>
</tr>
<tr>
<td>Week 8</td>
<td>Midterm exam & Student presentations</td>
</tr>
<tr>
<td>Week</td>
<td>Activity</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Week 9</td>
<td>Student presentations</td>
</tr>
<tr>
<td>Week 10</td>
<td>Student presentations</td>
</tr>
<tr>
<td>Week 11</td>
<td>Student presentations</td>
</tr>
<tr>
<td>Week 12</td>
<td>Student presentations</td>
</tr>
<tr>
<td>Week 13</td>
<td>Student presentations</td>
</tr>
<tr>
<td>Week 14</td>
<td>Student presentations</td>
</tr>
<tr>
<td>Week 15</td>
<td>Student presentations</td>
</tr>
</tbody>
</table>
At their February 13, 2014 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the KIN proposals:

- The Committee conditionally approved the proposal to add KIN 3805 pending a revised syllabus that either changes the 20% final sales class project or justifies the reasoning behind it. The Committee felt that this would penalize a student if the class as a whole did not perform as well. Is there any structure to how the group functions for this class project? The syllabus should show how the project is graded, i.e. peer reviews. The Committee also felt that this course was similar to a marketing course and would therefore need a letter of support from the MKT department.

- The Committee conditionally approved the proposal to add KIN 7506 pending a revised syllabus that better details the course evaluation. The syllabus is essentially a contract between the student and the instructor and should be as informative as possible.

- The Committee conditionally approved the proposal to change KIN 7530. The Committee wanted further justification as to why the lab component of the course was being dropped. Since this is a 7000-level course, the department can increase the credit hours and still maintain the lab; this would then allow the course to cover the necessary material. If the department wishes to drop the lab component, then a justification is required. The Committee also requested a syllabus for the course as the proposal is changing the format of the course.

- The Committee conditionally approved the proposals to add KIN 7546 and 7547 pending revised syllabi that adds the out of class expectations. This tells the student how much time is expected outside of class spent on the course. Please see attached for examples.

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastr1@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.
REQUEST FOR ADDITION OF NEW COURSE

Department: Kinesiology Date: 10/1/13
Human Sciences and Education

PROPOSED COURSE
Rubric & No.: KIN 7547 Title: Advanced Topics in Exercise Physiology

COURSE CREDIT
Graduate Credit: x YES __ NO
Semester Hours of Credit: 3 (For combination course types only: __________ Lecture Hrs. __________ Lab/Sem/Rec Hrs.
If course may be repeated for credit (i.e. special topics), course may be taken for a max. of 6 credit hours.
Credit will not be given for this course and:

GRADING
Final Exam: x YES __ NO Grading System: x Letter Grade __ Pass/Fail
(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE
(Indicate hours in the appropriate course type)
__ LEC/REC __ LEC/SEM __ LEC ____ LAB __ LEC/LAB __ SEM __ CLIN/PRACT __ RES/IND
Maximum enrollment per section: 15 (use integer, e.g. 25 not 20-30)

CATALOG TEXT
(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)
7547 Advanced Topics in Exercise Physiology (3) Prereq.: Consent of instructor. May be repeated for a max of 6 semester hours of credit when topics vary. Selected topics linking advanced exercise physiology topics across disciplines, rehabilitation and research.

BUDGET IMPACT
If this course is approved, will additional staff be needed? ____ YES x NO
Will additional space, equipment, special library materials or other major expense be involved? ____ YES x NO
(If answer to either question above is ‘yes’ attach explanation.) Academic Affairs Approval: x

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?
SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria
(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

APPROVALS
Department Faculty Approval 10/4/13 College Faculty Approval 1-30-14

College Contact: Casey Bennett College Contact E-mail: cbenne5@lsu.edu

Academic Affairs Approval (date)
JUSTIFICATION

This special topics course will enable students to learn about, acquire a better understanding of, and gain an appreciation for more specialized areas within the study of exercise physiology. Existing courses do not provide this opportunity. It will not duplicate any existing course.
Sample Syllabus -- KIN 7547 Advanced Topics in Exercise Physiology
Sample Topic:
Note: Syllabus content will change when topic changes

CATALOG STATEMENT:
7547 Advanced Topics in Exercise Physiology (3) Prereq.: Consent of instructor. May be repeated for a max of 6 semester hours of credit when topics vary. Selected topics linking advanced exercise physiology topics across disciplines, rehabilitation and research.

TEXT: None
Each day of class students will be assigned to present one of eight research articles covering the topic for the week.

Course Overview
This class will enable students to understand the influence flexibility exercises have upon athletic performance. We will cover:

- Pre-event stretching’s influence upon strength, power and endurance;
- Possible mechanisms responsible for pre-event stretching’s influence;
- The dose: response effect of static stretching and performance;
- Flexibility training’s influence upon strength, power, endurance, and exercise economy;
- Possible mechanisms responsible for flexibility training’s influence;
- The interactions between static and dynamic stretching;

Grading Criteria:
The class will be graded through

- Class presentation, 20%;
- Midterm Exam, 40%;
- Final exam, 40%;

Final Grade:
A = 90% and above
B = 80 to 89%
C = 70 to 79%
D = 60 to 69%
F = 59% and below

15 Week Topical Outline: (example)

Week 1 Pre-event stretching’s influence upon the 1 RM
Week 2 Pre-event stretching’s influence upon vertical jump
Week 3 Pre-event stretching’s influence upon sprinting
Week 4 Pre-event stretching’s influence upon muscle strength endurance
Week 5 Pre-event stretching’s influence upon dynamic balance
Week 6 Do arms and legs have the same response to pre-event stretching?
Week 7 Do concentric & eccentric actions have the same response to pre-event stretching?
Week 8 Dose: response effects
Week 9 Possible mechanisms: tendon alterations
Week 10 Possible mechanisms: nerve inhibition
Week 11 Possible mechanisms: effects on unstretched contralateral limb
Week 12 Flexibility training’s influence upon strength
Week 13 Flexibility training’s influence upon endurance, and exercise economy
Week 14 Interactions between static and dynamic stretching
Week 15 Interactions between static and dynamic stretching

List of Required Readings:
Will be provided depending upon the topic.
Hi Anna,

This is what I have so far.

KIN 7546 & KIN 7547 out of class expectations added to syllabus

KIN 7530 syllabus – the faculty would like to drop the lab as previously indicated. I have also attached additional justification to what was originally sent.

Dr. Solman is contacting Dr. Burns, Chair of the Marketing Department about the proposed addition of KIN 3805.

I will have the updated syllabus for KIN 7506 to you shortly.

Thanks,
Dee

--
Dee Jacobsen, Ph.D.
Assistant Professor, Professional Practice
Undergraduate Sport Administration Coordinator
School of Kinesiology
Louisiana State University
112 H.P. Long Fieldhouse
225-578-3548
djacob6@lsu.edu

From: Anna M Castrillo [mailto:acastr1@lsu.edu]
Sent: Friday, February 14, 2014 8:31 AM
To: Dorothy Jacobsen
Cc: Melinda A Solmon; Casey H Bennett
Subject: C&C memo from the C&C Committee

Dee,

Attached please find the memo from the Courses and Curricula Committee regarding the actions taken on the KIN proposals. Please note that we will need all the information as soon as possible to make it into the 14-15 General Catalog. You can scan the information to me if you wish.

Sincerely,

Anna Castrillo, M.A.
Coordinator
Office of the University Registrar
Louisiana State University
112 Thomas Boyd Hall
Phone: (225)578-4111
Fax: (225)578-5991
Sample Syllabus -- KIN 7547 Advanced Topics in Exercise Physiology

Sample Topic:
Note: Syllabus content will change when topic changes

CATALOG STATEMENT:
7547 Advanced Topics in Exercise Physiology (3) Prereq.: Consent of instructor. May be repeated for a max of 6 semester hours of credit when topics vary. Selected topics linking advanced exercise physiology topics across disciplines, rehabilitation and research.

TEXT: None
Each day of class students will be assigned to present one of eight research articles covering the topic for the week.

Course Overview
This class will enable students to understand the influence flexibility exercises have upon athletic performance. We will cover:

- Pre-event stretching’s influence upon strength, power and endurance;
- Possible mechanisms responsible for pre-event stretching’s influence;
- The dose: response effect of static stretching and performance;
- Flexibility training’s influence upon strength, power, endurance, and exercise economy;
- Possible mechanisms responsible for flexibility training’s influence;
- The interactions between static and dynamic stretching;

Grading Criteria:
The class will be graded through
- Class presentation, 20%;
- Midterm Exam, 40%;
- Final exam, 40%;

Final Grade:
A = 90% and above
B = 80 to 89%
C = 70 to 79%
D = 60 to 69%
F = 59% and below

Out of Class Expectations
It is expected that the students have read the assigned chapters or pages prior to class for the background necessary to properly participate in the discussion and think critically about the concepts addressed. As a general policy, for each hour you are in class, you (the student) should plan to spend at least two hours preparing for the next class. Since this course is for three credit hours, you should expect to spend around six hours outside of class each week reading or writing assignments for the class.

15 Week Topical Outline: (example)

Week 1	Pre-event stretching’s influence upon the 1 RM
Week 2	Pre-event stretching’s influence upon vertical jump
Week 3	Pre-event stretching’s influence upon sprinting
Week 4	Pre-event stretching’s influence upon muscle strength endurance
Week 5	Pre-event stretching’s influence upon dynamic balance
Week 6	Do arms and legs have the same response to pre-event stretching?
Week 7	Do concentric & eccentric actions have the same response to pre-event stretching?
Week 8 Dose: response effects
Week 9 Possible mechanisms: tendon alterations
Week 10 Possible mechanisms: nerve inhibition
Week 11 Possible mechanisms: effects on unstretched contralateral limb
Week 12 Flexibility training's influence upon strength
Week 13 Flexibility training’s influence upon endurance, and exercise economy
Week 14 Interactions between static and dynamic stretching
Week 15 Interactions between static and dynamic stretching

List of Required Readings:
Will be provided depending upon the topic.
At their February 13, 2014 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the KIN proposals:

- The Committee conditionally approved the proposal to add KIN 3805 pending a revised syllabus that either changes the 20% final sales class project or justifies the reasoning behind it. The Committee felt that this would penalize a student if the class as a whole did not perform as well. Is there any structure to how the group functions for this class project? The syllabus should show how the project is graded, i.e. peer reviews. The Committee also felt that this course was similar to a marketing course and would therefore need a letter of support from the MKT department.

- The Committee conditionally approved the proposal to add KIN 7506 pending a revised syllabus that better details the course evaluation. The syllabus is essentially a contract between the student and the instructor and should be as informative as possible.

- The Committee conditionally approved the proposal to change KIN 7530. The Committee wanted further justification as to why the lab component of the course was being dropped. Since this is a 7000-level course, the department can increase the credit hours and still maintain the lab; this would then allow the course to cover the necessary material. If the department wishes to drop the lab component, then a justification is required. The Committee also requested a syllabus for the course as the proposal is changing the format of the course.

- The Committee conditionally approved the proposals to add KIN 7546 and 7547 pending revised syllabi that adds the out of class expectations. This tells the student how much time is expected outside of class spent on the course. Please see attached for examples.

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastr1@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.
REQUEST FOR ADDITION OF NEW COURSE

Department: Geography and Anthropology
College: Humanities and Social Sciences
Date: 3/19/2013

PROPOSED COURSE

Short Title: PALEOCLIMATOLOGY
Rubric & No.: GEOG 7943
Title: Paleoclimatology

COURSE CREDIT
Graduate Credit: X YES
Semester Hours of Credit: 3
(For combination course types only: Lecture Hrs. ___ Lab/Sem/Rec Hrs. ___)
If course may be repeated for credit (i.e. special topics), course may be taken for a max. of ___ credit hours.
Credit will not be given for this course and: ___

GRADING
Final Exam: X YES
Grading System: X Letter Grade ___ Pass/Fail ___
(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE
(Indicate hours in the appropriate course type)

LEC/REC 2/L
LEC/SEM
LEC
LAB
LEC/LAB
SEM
CLIN/PRACT
RES/IND

Maximum enrollment per section: 25
(Use integer, e.g. 25 not 20-30)

CATALOG TEXT
(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

GEOG 7943 Paleoclimatology (3)
Prereq.: GEOG 2050 and GEOG 2051 or GEOL 1001 and 1003 or consent of the instructor. Also offered as ANTH 7943 and GEOL 7943. Theory and methods of reconstructing climatic variability from biological and geological proxy records as well as historical archives.

BUDGET IMPACT
If this course is approved, will additional staff be needed? X YES
Will additional space, equipment, special library materials or other major expense be involved? X YES
(If answer to either question above is "yes" attach explanation.)
Academic Affairs Approval: ___ Date: ___

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria
(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

APPROVALS

Department Faculty Approval 5/3/13
College Faculty Approval 10/17/13

Department Chair’s Signature
Graduate Dean’s Signature (for 4000 level and above)
College Contact:

College Contact E-mail:

Academic Affairs Approval
Date: January 30, 2014
To: Faculty Senate Courses and Curricula Committee
From: Kristine DeLong
RE: GEOG/ANTH/GEOL 7943 Paleoclimatology

Thank you for your comments and suggestions for my submission of a new course GEOG 7943 to the curricula of LSU. I have addressed the items in the memo dated January 16, 2014 below.

I have revised the syllabus to include more details of the final project noted in italics, file attached. Specifically, “I encourage students to have lab-based projects or literature research topics close to their thesis research that involves proxy records. The projects may be laboratory based, either the students own project or a project that instructor provides that is closely aligned to the student’s research interests. Students may elect for a literature review based project with a minimum of 10 peer review papers to be summarized. Students must have their projects approved by the instructor to ensure they are feasible within the time constraints and resources of the PAST lab as well as the learning objectives of the course. The students must demonstrate and/or detail how the principles of paleoclimatology apply to their topic in their projects. In-class participation will include presentation of research papers, discussion of assigned readings, in class learning activities, and presentations.”

The Anthropology professors asked to have the course cross-listed to attract more anthropology students, especially archeologists. There are four anthropology students enrolled in the course currently for Fall 2014 out of 11 total students. The Anthropology masters students have a methods course requirement and this class is considered a methods class, if the student’s advisor agrees the course is appropriate; see below. The cross listing as ANTH 7943 helps fulfill this requirement.

From Geography and Anthropology Graduate Handbook:
Summary of Anthropology Master’s Course Requirements
A minimum of 31 hours is required for the master’s degree. Of those 31, at least 6 hours are thesis hours (ANTH 8000) and 1 hour includes the completion of Introduction to Graduate Study (ANTH 7901). The remaining 24 hours of course work include 9 hours (3 courses) at the 7000 level. Of those 9 hours, at least 6 hours (2 courses) must be earned in seminars. These seminars are generally taken within the department, but seminars can be taken in other departments, in consultation with the student’s major professor. The student must take each seminar from a different faculty member.

1. ANTH 7901 Introduction to Graduate Study
2. ANTH 4085 History of Anthropological Thought (or advanced theory course if equivalent already taken)
3. 3 of 4 required 4000-level courses (4020, 4040, 4060, and 4082)
4. 9 hours of 7000-level courses (two of these must be seminars)
5. **Methods Course (selected in consultation with advisor-see Form 5)**
6. 6 hours of thesis research (ANTH 8000)
Regarding the cross-listing with Geology and Geophysics:

When I submitted the new course request, the CAPPE committee asked for a letter of support from the Department of Geology and Geophysics (G&G). The department Chair Carol Wicks emailed the G&G faculty and there was broad support for the class and they asked if it could be cross-listed with their department. In their letter of support, they asked if the course could be cross-listed as GEOL 7943. Paleoclimatology is a field that is just as closely aligned to geology as it is to geography. This is a course that is focused on Earth history, which is an important part of geology. By cross listing this course, we are accomplishing the following:

1) Offering broader but equally appropriate course choices to students who want a G&G minor (outside the department) and secondary focus (in the G&G department).
2) Strengthening academic and scientific ties between two departments in different colleges, but with complementary research and educational interests.
3) Encouraging graduate students from diverse backgrounds to interact through such interdepartmental courses.

Cross listing will allow Geology and Geophysics students to receive credit to fulfill their degree requirements. In particular, graduate students who want a minor in Geology are required to take nine hours of GEOL courses and cross listing with GEOG 7943 will allow them to fulfill this requirement. For the Ph.D. program in Department of Geology and Geophysics, the students must take four courses in their subdiscipline as a major but only one can be outside the department. Having GEOG 7943 cross-listed as GEOL 7943 would help fulfill that requirement.

From the Department of Geology and Geophysics Graduate handbook:

1.4 Minor in Geology

The department provides for graduate students in other departments to take a minor in Geology and Geophysics. The minor consists of nine (9) hours of graded course work in Geology (GEOL) at the graduate level with at least three (3) hours at the 7000-level in graded course work in Geology (GEOL).

2.2.e PhD Course Requirements:

1) Successful completion of at least 60 semester hours in courses numbered 4000 or above,
2) The Doctoral student must take a minimum of 25 hours of graded course work and seminars beyond the B.S. degree distributed as follows:
 a. Major: 4 courses in the subdiscipline identified as the Major. At least two of these courses must be at the 7000-level (12 hours). Up to one of these classes may be taken outside of the department, if approved by the Graduate Advisor and the studen’s Major Professor and Dissertation Committee.

From the G&G department:

Additionally, this is a Geography and Anthropology (G&A) course and G&G are responding to outreach from G&A. Because of this, it is appropriate for G&A to take the initiative on this rather than our adding this specific course to our own program. Having this, or other classes cross listed, is effective for G&G because it allows us to keep our program description simpler, in terms of allowing all cross-listed courses for credit, rather than including a large number of courses for G&G credit that do not have G&G course names.
Justification

This course will supplement graduate level work in the department of Geography and Anthropology by providing a new course of study that intersects with climatological and archaeological studies and one that is essential to students specializing in paleoclimatology. Students in Geography and Anthropology, who study past environments on spatial and human scales, will find this course applicable to their academic interests as well as students in other departments at LSU including Geology and Geophysics, Renewable Natural Resources, Environmental Science, Coastal Studies, Oceanography, and History. This course was taught as GEOG 7911 Special Topics in Spring 2011 and had five geology graduate students, one oceanography student, and two students from Archaeology. With the growth of the paleoclimate research program and the PAST lab, the instructor expects additional students will enroll in the course. Lastly, this course includes a seminar portion that will fulfill the requirement for graduate students in Geography and Anthropology to complete seminar courses with different instructors.

A search of the LSU General catalogue did not find any equivalent courses being taught. The closest course is GEOL 7085 Paleoceanography that focuses on lower resolution marine sediment records on longer geological time intervals than the proposed course and that course is focused on only one type of archive record. This proposed course focuses on high-resolution proxy records from both terrestrial and marine sources as well as historical documents. Furthermore, paleoceanography focuses on ocean circulation in the surface and deep ocean whereas paleoclimatology focuses on atmospheric and surface ocean processes. It is my understanding that GEOL 7085 Paleoceanography has not been taught in at least 4 years. I spoke with Carole Wicks, chair of the Geology department, when I first taught the special course and she was in support.

Regarding final exams: This course is a graduate level course in which students are expected to perform at a highest level. Primary assessment is a research project in paleoclimatology in which the students will present their results in written and oral presentations in which they must demonstrate knowledge of the topics presented in the course. Therefore, no final exam is required during finals weeks so that students can submit with final written paper.
GEOG/ANTH/GEOL 7943—Paleoclimate
Syllabus from Spring 2014
Mondays and Wednesdays from 4:30 pm - 5:50 PM in Howe-Russell 254 (old building)

Contact Information
Dr. Kristine Delong (Instructor) Dept. of Geography and Anthropology
E326 Howe-Russell (new building) Office hours: TTh 12-1 pm or by appt.
Email: kdelong@lsu.edu Phone: 225-578-5836

Course Overview
This course will cover the methods of reconstructing climate from biological, geological, and historical archives. The topical focus of GEOG 7943 Paleoclimate includes: (1) basic concepts in paleoclimatology; (2) in depth discussion of the many types of proxy records used in paleoclimate research; and (3) the development and interpretation of proxy records. Scientific thinking and real-world applications of climatological and ecological information are emphasized, along with an interactive approach to learning through the use of field trips, laboratory hands on experience, in-class active learning environment with multimedia and web resources.

Grades are assigned based on a semester project and in class participation, weighted as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>10%</td>
</tr>
<tr>
<td>Project outline</td>
<td>5%</td>
</tr>
<tr>
<td>Methods</td>
<td>5%</td>
</tr>
<tr>
<td>Results</td>
<td>5%</td>
</tr>
<tr>
<td>Discussion</td>
<td>5%</td>
</tr>
<tr>
<td>Final Project</td>
<td>40%</td>
</tr>
<tr>
<td>In-class activities</td>
<td>30%</td>
</tr>
</tbody>
</table>

I encourage students to have lab-based projects or literature research topics close to their thesis research that involves proxy records. The projects may be laboratory based, either the students own project or a project that instructor provides that is closely aligned to the student’s research interests. Students may elect for a literature review based project with a minimum of 10 peer review papers to be summarized. Students must have their projects approved by the instructor to ensure they are feasible within the time constraints and resources of the PAST lab as well as the learning objectives of the course. The students must demonstrate and/or detail how the principles of paleoclimatology apply to their topic in their projects. In-class participation will include presentation of research papers, discussion of assigned readings, in class learning activities, and presentations. Final course letter grades will be assigned using a standard A-B-C system, with 90% the lowest A, 80% the lowest B, and 70% the lowest C.

Course Calendar – Spring 2014 (Subject to change)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Dates</th>
<th>Reading</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of climate variability</td>
<td>Jan 15</td>
<td>Chap 2</td>
<td></td>
</tr>
<tr>
<td>No class Jan 20 for MLK day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overview of paleoclimate research</td>
<td>Jan 22</td>
<td>Chap 1</td>
<td></td>
</tr>
<tr>
<td>Dating methods</td>
<td>Jan 27, 29, Feb 3</td>
<td>Chap 3, 4</td>
<td>Topic approved Jan 27</td>
</tr>
<tr>
<td>Proposal presentations</td>
<td>Feb 5</td>
<td>Chap 10</td>
<td>Written proposals Feb 12</td>
</tr>
<tr>
<td>Tree-rings</td>
<td>Feb 10, 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable isotopes</td>
<td>Feb 17, 19</td>
<td>Sharp 1, 2</td>
<td>Outlines Feb 19</td>
</tr>
<tr>
<td>Lab tours</td>
<td>Feb 24, 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mardi Gras Break March 2 – 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice Cores</td>
<td>March 5</td>
<td>Chap 5</td>
<td></td>
</tr>
<tr>
<td>Marine sediments</td>
<td>March 10, 12</td>
<td>Chap 6</td>
<td>Methods March 10</td>
</tr>
<tr>
<td>Corals</td>
<td>March 17, 19</td>
<td>Chap 6</td>
<td></td>
</tr>
<tr>
<td>Cave deposits</td>
<td>March 24, 26</td>
<td>Chap 7</td>
<td></td>
</tr>
<tr>
<td>Mollusks</td>
<td>March 31, April 2</td>
<td>Chap 9</td>
<td>April 7 Results</td>
</tr>
<tr>
<td>Pollen analysis, AAG meeting</td>
<td>April 7, 9</td>
<td>Chap 9</td>
<td></td>
</tr>
<tr>
<td>April 14 – 20 Spring Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentary data</td>
<td>April 21, 23</td>
<td>Chap 11</td>
<td></td>
</tr>
<tr>
<td>Climate Models</td>
<td>April 28</td>
<td>Chap 12</td>
<td>April 26 Discussion</td>
</tr>
<tr>
<td>Project presentations</td>
<td>April 30</td>
<td>Chap 12</td>
<td>Presentation</td>
</tr>
<tr>
<td>Finals Week</td>
<td></td>
<td></td>
<td>Papers due May 7</td>
</tr>
</tbody>
</table>

Moodle Course related material will be posted on Moodle. I recommend you check Moodle before each class for last minute updates. Moodle is accessed through your PAWS account https://ssol.paws.lsu.edu/login. If you need help with Moodle, contact the Help Desk helpdesk@lsu.edu or http://itsweb.lsu.edu/USS/helpdesk/item2424.html.

Attendance You are expected to attend class and participate. The evaluation of student performance will include class activities and discussions.

Missed Assignments Please respect dates for turning in assignments. I will post an assignment on Moodle for you to upload any assignments. If you email your assignment, I will send you an email to confirm I received your work. If you do not get a confirmation, I did not receive your email and your assignment will be considered late if the deadline has past. You should plan your semester to meet all your obligations, not just for this class. If you have a legitimate excuse, you must notify the instructor by e-mail or telephone before the assignment is due or when that is logistically impossible, very soon afterwards on the same day. You must prove your excuse in writing (doctor’s note, towing receipt with time listed, etc.). Conflicts with jobs, other classes, and your personal life are not satisfactory excuses. Personal travel is not, in any circumstance, a legitimate excuse. Late work will receive a 10% deduction each day it is late. If you are attending a conference or conducting fieldwork related to your research and you will miss class or a deadline, you must complete the assignment before you leave and notify the instructor of the dates you will miss.

Class Policies
- Please respect your classmates and instructor by being on time (i.e., arrive before 4:00 PM) and be prepared.
- Cell phones and other electronic devices must be silent during class. You are not allowed to send email or text messages during class. I will allow laptops for note taking only or you may use the workstations in the classroom.
- Please refrain from personal conversations during class. If you have a question, raise your hand.
- If you must leave class early, please sit near the door and exit quietly.

Expectations I expect graduate students to display professional attitude towards their class work. If you need help with time management or planning your semester, see me early in the semester so I can help you. I have a lot of experience with time management and can give you helpful guidance.

Email Policy Email will be a primary means of communication for this course. Students must ensure that their email address on Moodle is accurate, as important course information will be provided periodically via the Moodle email interface. Students must make it a point to check their email regularly (at a minimum, before class and 2-3 times per week) to stay informed of any course news and announcements.
- Address your email message professionally (i.e., written letter with proper spelling and grammar).
- Sign your name at the end of the email with contact information; it is difficult to identify a student solely by email address. You should have a professional signature setup in your email software for all your emails. See me if need help.
- When making requests for information or assistance, always be polite.

If your email request pertains to the whole class, I reserve the right to forward it to your classmates so that everyone can benefit.

Physical or Learning Disabilities Any student with a documented disability needing academic adjustments is requested to speak with the Office of Disability Services and the instructor, as early in the semester as possible. All discussions will remain confidential. This publication/material is available in alternative formats upon request. Please contact the Office of Disability Services, 112 Johnston Hall, 225-578-5919. I look forward to talking with you soon to learn how I may be helpful in enhancing your academic success in this course.

Academic Integrity Students are encouraged to share ideas and skills and to freely discuss the principles and applications of course materials outside of class lectures and exams. However, the guiding principle of academic integrity is that a student's submitted work must be the student's own.

There is no place or tolerance for cheating in this course.

“Academic Misconduct” shall mean cheating, plagiarism, collusion, falsifying academic records, and all other actions which are described in Section 8.1.C. or any act or other form of academic dishonesty or omission designed to give an unfair academic advantage to the student.” LSU Code of Student Conduct

Misrepresentation of your own work through plagiarism, collusion, or data distortion is a serious breach of the LSU Code of Student Conduct, which states:

“Plagiarism” is defined as the unacknowledged inclusion of someone else's words, structure, ideas, or data. When a student submits work as his/her own that includes the words, structure, ideas, or data of others, the source of this information must be acknowledged through complete, accurate, and specific references, and, if verbatim statements are included, through quotation marks as well. Failure to identify any source (including interviews, surveys, etc.), published in any medium (including on the internet) or unpublished, from which words, structure, ideas, or data have been taken, constitutes plagiarism.”

Review the LSU Code of Student conduct at: http://appl003.lsu.edu/slas/dos/nsf/index
Hi Anna, will the email below be sufficient?

Thanks,
Linda

Geography and anthropology is pleased to have geology and geophysics cross-list their course course GEOG/ANTH 7943.

Kristine DeLong

On Jan 8, 2014, at 3:12 PM, "Linda T Strain" <lstrain@lsu.edu> wrote:

Kristine, I think they will take an email from you?

Thanks,
Linda

Well, G&G is pushing the form forward for Geol/7943 (Geog7943). It seems that YOU or G&A Chair need (needs) to write a letter to G&G stating that it is OK for Geol to cross-list the course.

Carol Wicks

Chair and Frank W. and Patricia Harrison Family Professor
Department of Geology and Geophysics
E235 Howe-Russell-Kniffen Geoscience Complex
College of Science
Louisiana State University
Baton Rouge LA 70803

From: Martha A Cedotal
Sent: Wednesday, January 08, 2014 1:16 PM
From: Lawrence Rouse, Chair, Courses and Curricula Committee

At their January 16, 2014 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the GEOG/ANTH/GEOL proposals:

GEOG/ANTH/GEOL 7943
- The Committee conditionally approved the proposals to add GEOG/ANTH/GEOL 7943 pending a revised syllabus that details the final project. Will the topics be assigned, chosen by the student, etc.? The Committee also wanted to know why the courses were being crosslisted? Is there a reason why GEOG 7943 cannot be included in all programs?

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastrl@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.
REQUEST FOR ADDITION OF NEW COURSE

Department: Geography and Anthropology
College: Humanities and Social Sciences
Date: 3/19/2013

PROPOSED COURSE
Short Title: PALEOCLIMATOLOGY
Rubric & No.: ANTH 7943
Title: Paleoclimatology

COURSE CREDIT
Graduate Credit: X YES ___ NO
Semester Hours of Credit: 3
(For combination course types only: Lecture Hrs. Lab/Sem/Rec Hrs.)
If course may be repeated for credit (i.e. special topics), course may be taken for a max. of credit hours.
Credit will not be given for this course and:

GRADING
Final Exam: YES X NO
Grading System: X Letter Grade Pass/Fail
(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE
(Indicate hours in the appropriate course type)

Maximum enrollment per section: 25
(Use integer, e.g. 25 not 20-30)

CATALOG TEXT
(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

ANTH 7943 Paleoclimatology (3) See GEOG 7943.

BUDGET IMPACT
If this course is approved, will additional staff be needed? ___ YES X NO
Will additional space, equipment, special library materials or other major expense be involved? ___ YES X NO
(If answer to either question above is "yes" attach explanation.)

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria (For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

APPROVALS
Department Faculty Approval
College Faculty Approval

Department Chair's Signature
College Dean's Signature

Graduate Dean's Signature (for 4000 level and above)
College Contact:
College Contact E-mail:
Date: January 30, 2014
To: Faculty Senate Courses and Curricula Committee
From: Kristine DeLong
RE: GEOG/ANTH/GEOL 7943 Paleoclimatology

Thank you for your comments and suggestions for my submission of a new course GEOG 7943 to the curricula of LSU. I have addressed the items in the memo dated January 16, 2014 below.

I have revised the syllabus to include more details of the final project noted in italics, file attached. Specifically, “I encourage students to have lab-based projects or literature research topics close to their thesis research that involves proxy records. The projects may be laboratory based, either the students own project or a project that instructor provides that is closely aligned to the student’s research interests. Students may elect for a literature review based project with a minimum of 10 peer review papers to be summarized. Students must have their projects approved by the instructor to ensure they are feasible within the time constraints and resources of the PAST lab as well as the learning objectives of the course. The students must demonstrate and/or detail how the principles of paleoclimatology apply to their topic in their projects. In-class participation will include presentation of research papers, discussion of assigned readings, in class learning activities, and presentations.”

The Anthropology professors asked to have the course cross-listed to attract more anthropology students, especially archeologists. There are four anthropology students enrolled in the course currently for Fall 2014 out of 11 total students. The Anthropology masters students have a methods course requirement and this class is considered a methods class, if the student’s advisor agrees the course is appropriate; see below. The cross listing as ANTH 7943 helps fulfill this requirement.

From Geography and Anthropology Graduate Handbook:

Summary of Anthropology Master’s Course Requirements

A minimum of 31 hours is required for the master’s degree. Of those 31, at least 6 hours are thesis hours (ANTH 8000) and 1 hour includes the completion of Introduction to Graduate Study (ANTH 7901). The remaining 24 hours of course work include 9 hours (3 courses) at the 7000 level. Of those 9 hours, at least 6 hours (2 courses) must be earned in seminars. These seminars are generally taken within the department, but seminars can be taken in other departments, in consultation with the student’s major professor. The student must take each seminar from a different faculty member.

1. ANTH 7901 Introduction to Graduate Study
2. ANTH 4085 History of Anthropological Thought (or advanced theory course if equivalent already taken)
3. 3 of 4 required 4000-level courses (4020, 4040, 4060, and 4082)
4. 9 hours of 7000-level courses (two of these must be seminars)
5. **Methods Course (selected in consultation with advisor-see Form 5)**
6. 6 hours of thesis research (ANTH 8000)
Regarding the cross-listing with Geology and Geophysics:
When I submitted the new course request, the CAPPE committee asked for a letter of support from the Department of Geology and Geophysics (G&G). The department Chair Carol Wicks emailed the G&G faculty and there was broad support for the class and they asked if it could be cross-listed with their department. In their letter of support, they asked if the course could be cross-listed as GEOL 7943. Paleoclimatology is a field that is just as closely aligned to geology as it is to geography. This is a course that is focused on Earth history, which is an important part of geology. By cross listing this course, we are accomplishing the following:

1) Offering broader but equally appropriate course choices to students who want a G&G minor (outside the department) and secondary focus (in the G&G department).
2) Strengthening academic and scientific ties between two departments in different colleges, but with complementary research and educational interests.
3) Encouraging graduate students from diverse backgrounds to interact through such inter-departmental courses.

Cross listing will allow Geology and Geophysics students to receive credit to fulfill their degree requirements. In particular, graduate students who want a minor in Geology are required to take nine hours of GEOL courses and cross listing with GEOG 7943 will allow them to fulfill this requirement. For the Ph.D. program in Department of Geology and Geophysics, the students must take four courses in their subdiscipline as a major but only one can be outside the department. Having GEOG 7943 cross-listed as GEOL 7943 would help fulfill that requirement.

From the Department of Geology and Geophysics Graduate handbook:

1.4 Minor in Geology
The department provides for graduate students in other departments to take a minor in Geology and Geophysics. The minor consists of nine (9) hours of graded course work in Geology (GEOL) at the graduate level with at least three (3) hours at the 7000-level in graded course work in Geology (GEOL).

2.2.e PhD Course Requirements:
1) Successful completion of at least 60 semester hours in courses numbered 4000 or above,
2) The Doctoral student must take a minimum of 25 hours of graded course work and seminars beyond the B.S. degree distributed as follows:
 a. Major: 4 courses in the subdiscipline identified as the Major. At least two of these courses must be at the 7000-level (12 hours). Up to one of these classes may be taken outside of the department, if approved by the Graduate Advisor and the student’s Major Professor and Dissertation Committee.

From the G&G department:
Additionally, this is a Geography and Anthropology (G&A) course and G&G are responding to outreach from G&A. Because of this, it is appropriate for G&A to take the initiative on this rather than our adding this specific course to our own program. Having this, or other classes cross listed, is effective for G&G because it allows us to keep our program description simpler, in terms of allowing all cross-listed courses for credit, rather than including a large number of courses for G&G credit that do not have G&G course names.
Justification

This course will supplement graduate level work in the department of Geography and Anthropology by providing a new course of study that intersects with climatological and archaeological studies and one that is essential to students specializing in paleoclimatology. Students in Geography and Anthropology, who study past environments on spatial and human scales, will find this course applicable to their academic interests as well as students in other departments at LSU including Geology and Geophysics, Renewable Natural Resources, Environmental Science, Coastal Studies, Oceanography, and History. This course was taught as GEOG 7911 Special Topics in Spring 2011 and had five geology graduate students, one oceanography student, and two students from Archaeology. With the growth of the paleoclimate research program and the PAST lab, the instructor expects additional students will enroll in the course. Lastly, this course includes a seminar portion that will fulfill the requirement for graduate students in Geography and Anthropology to complete seminar courses with different instructors.

A search of the LSU General catalogue did not find any equivalent courses being taught. The closest course is GEOL 7085 Paleoceanography that focuses on lower resolution marine sediment records on longer geological time intervals than the proposed course and that course is focused on only one type of archive record. This proposed course focuses on high-resolution proxy records from both terrestrial and marine sources as well as historical documents. Furthermore, paleoceanography focuses on ocean circulation in the surface and deep ocean whereas paleoclimatology focuses on atmospheric and surface ocean processes. It is my understanding that GEOL 7085 Paleoceanography has not been taught in at least 4 years. I spoke with Carole Wicks, chair of the Geology department, when I first taught the special course and she was in support.

Regarding final exams: This course is a graduate level course in which students are expected to perform at a highest level. Primary assessment is a research project in paleoclimatology in which the students will present their results in written and oral presentations in which they must demonstrate knowledge of the topics presented in the course. Therefore, no final exam is required during finals weeks so that students can submit with final written paper.
GEOG/ANTH/GEOL 7943–Paleoclimatology
Syllabus from Spring 2014
Mondays and Wednesdays from 4:30 pm - 5:50 PM in Howe-Russell 254 (old building)

Contact Information
Dr. Kristine DeLong (Instructor) Dept. of Geography and Anthropology
E326 Howe-Russell (new building) Office hours: TTh 12-1 pm or by appt.
Email: kdelong@lsu.edu Phone: 225-578-5836

Course Overview
This course will cover the methods of reconstructing climate from biological, geological, and historical archives. The topical focus of GEOG 7943 Paleoclimatology includes: (1) basic concepts in paleoclimatology; (2) in depth discussion of the many types of proxy records used in paleoclimatic research; and (3) the development and interpretation of proxy records. Scientific thinking and real-world applications of climatological and ecological information are emphasized, along with an interactive approach to learning through the use of field trips, laboratory hands on experience, in-class active learning environment with multimedia and web resources.

Grades are assigned based on a semester project and in class participation, weighted as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>10%</td>
</tr>
<tr>
<td>Project outline</td>
<td>5%</td>
</tr>
<tr>
<td>Methods</td>
<td>5%</td>
</tr>
<tr>
<td>Results</td>
<td>5%</td>
</tr>
<tr>
<td>Discussion</td>
<td>5%</td>
</tr>
<tr>
<td>Final Project</td>
<td>40%</td>
</tr>
<tr>
<td>In-class activities</td>
<td>30%</td>
</tr>
</tbody>
</table>

I encourage students to have lab-based projects or literature research topics close to their thesis research that involves proxy records. The projects may be laboratory based, either the students own project or a project that instructor provides that is closely aligned to the student’s research interests. Students may elect for a literature review based project with a minimum of 10 peer review papers to be summarized. Students must have their projects approved by the instructor to ensure they are feasible within the time constraints and resources of the PAST lab as well as the learning objectives of the course. The students must demonstrate and/or detail how the principles of paleoclimatology apply to their topic in their projects. In-class participation will include presentation of research papers, discussion of assigned readings, in class learning activities, and presentations. Final course letter grades will be assigned using a standard A-B-C system, with 90% the lowest A, 80% the lowest B, and 70% the lowest C.

Course Calendar – Spring 2014 (Subject to change)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Dates</th>
<th>Reading</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of climate variability</td>
<td>Jan 15</td>
<td>Chap 2</td>
<td></td>
</tr>
<tr>
<td>Overview of paleoclimate research</td>
<td>Jan 22</td>
<td>Chap 1</td>
<td></td>
</tr>
<tr>
<td>No class Jan 20 for MLK day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dating methods</td>
<td>Jan 27, 29, Feb 3</td>
<td>Chap 3, 4</td>
<td>Topic approved Jan 27</td>
</tr>
<tr>
<td>Proposal presentations</td>
<td>Feb 5</td>
<td>Chap 10</td>
<td>Proposal presentations</td>
</tr>
<tr>
<td>Tree-rings</td>
<td>Feb 10, 12</td>
<td></td>
<td>Written proposals Feb 12</td>
</tr>
<tr>
<td>Stable isotopes</td>
<td>Feb 17, 19</td>
<td>Sharp 1, 2</td>
<td>Outlines Feb 19</td>
</tr>
<tr>
<td>Lab tours</td>
<td>Feb 24, 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mardi Gras Break March 2 – 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice Cores</td>
<td>March 5</td>
<td>Chap 5</td>
<td></td>
</tr>
<tr>
<td>Marine sediments</td>
<td>March 10, 12</td>
<td>Chap 6</td>
<td>Methods March 10</td>
</tr>
<tr>
<td>Corals</td>
<td>March 17, 19</td>
<td>Chap 6</td>
<td></td>
</tr>
<tr>
<td>Cave deposits</td>
<td>March 24, 26</td>
<td>Chap 7</td>
<td></td>
</tr>
<tr>
<td>Mollusks</td>
<td>March 31, April 2</td>
<td>Moodie</td>
<td></td>
</tr>
<tr>
<td>Pollen analysis, AAG meeting</td>
<td>April 7, 9</td>
<td>Chap 9</td>
<td>April 7 Results</td>
</tr>
<tr>
<td>April 14 – 20 Spring Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentary data</td>
<td>April 21, 23</td>
<td>Chap 11</td>
<td></td>
</tr>
<tr>
<td>Climate Models</td>
<td>April 28</td>
<td>Chap 12</td>
<td>April 26 Discussion</td>
</tr>
<tr>
<td>Project presentations</td>
<td>April 30</td>
<td></td>
<td>Presentation</td>
</tr>
<tr>
<td>Finals Week</td>
<td></td>
<td></td>
<td>Papers due May 7</td>
</tr>
</tbody>
</table>

Moodle Course related material will be posted on Moodle. I recommend you check Moodle before each class for last minute updates. Moodle is accessed through your PAWS account https://ssc.paws.lsu.edu/login. If you need help with Moodle, contact the Help Desk helodesk@lsu.edu or http://itsweb.lsu.edu/US$/helpdesk/item2424.html.
http://www.geo.umass.edu/climate/paleo/html/. The textbook is currently being revised. Ebook is available at
http://www.elsevierdirect.com/product.jsp?isbn=9780121240103. Additional readings will be posted on Moodle.

Attendance You are expected to attend class and participate. The evaluation of student performance will include in
class activities and discussions.

Missed Assignments Please respect dates for turning in assignments. I will post an assignment on Moodle for you to
upload any assignments. If you email your assignment, I will send you an email to confirm I received your work. If you do
not get a confirmation, I did not receive your email and your assignment will be considered late if the deadline has past.
You should plan your semester to meet all your obligations, not just for this class. If you have a legitimate excuse, you
Must notify the instructor by email or telephone before the assignment is due or when that is logistically impossible,
very soon afterwards on the same day. You must prove your excuse in writing (doctor’s note, towing receipt with time
listed, etc.). Conflicts with jobs, other classes, and your personal life are not satisfactory excuses. Personal travel is not,
in any circumstance, a legitimate excuse. Late work will receive a 10% deduction each day it is late. If you are
attending a conference or conducting fieldwork related to your research and you will miss class or a deadline, you must
complete the assignment before you leave and notify the instructor of the dates you will miss.

Class Policies
• Please respect your classmates and instructor by being on time (i.e., arrive before 4:00 PM) and be prepared.
• Cell phones and other electronic devices must be silent during class. You are not allowed to send email or text
messages during class. I will allow laptops for note taking only or you may use the workstations in the classroom.
• Please refrain from personal conversations during class. If you have a question, raise your hand.
• If you must leave class early, please sit near the door and exit quietly.

Expectations I expect graduate students to display professional attitude towards their class work. If you need help with
time management or planning your semester, see me early in the semester so I can help you. I have a lot of experience
with time management and can give you helpful guidance.

Email Policy Email will be a primary means of communication for this course. Students must ensure that their email
address on Moodle is accurate, important course information will be provided periodically via the Moodle email
interface. Students must make it a point to check their email regularly (at a minimum, before class and 2-3 times per
week) to stay informed of any course news and announcements.

• Address your email message professionally (i.e., written letter with proper spelling and grammar).
• Sign your name at the end of the email with contact information; it is difficult to identify a student solely by email
address. You should have a professional signature setup in your email software for all your emails. See me if need help.
• When making requests for information or assistance, always be polite.

If your email request pertains to the whole class, I reserve the right to forward it to your classmates so that everyone can
benefit.

Physical or Learning Disabilities Any student with a documented disability needing academic adjustments is requested
to speak with the Office of Disability Services and the instructor, as early in the semester as possible. All discussions
will remain confidential. This publication/material is available in alternative formats upon request. Please contact the Office of
Disability Services, 112 Johnston Hall, 225-578-5919. I look forward to talking with you soon to learn how I may be helpful
in enhancing your academic success in this course.

Academic Integrity Students are encouraged to share ideas and skills and to freely discuss the principles and
applications of course materials outside of class lectures and exams. However, the guiding principle of academic integrity
is that a student's submitted work must be the student's own.

There is no place or tolerance for cheating in this course.
“Academic Misconduct” shall mean cheating, plagiarism, collusion, falsifying academic records, and all other
actions which are described in Section 8.1. C. or any act or other form of academic dishonesty or omission
designed to give an unfair academic advantage to the student.” LSU Code of Student Conduct

Misrepresentation of your own work through plagiarism, collusion, or data distortion is a serious breach of the LSU Code
of Student Conduct, which states:
“Plagiarism” is defined as the unacknowledged inclusion of someone else's words, structure, ideas, or data. When
a student submits work as his/her own that includes the words, structure, ideas, or data of others, the source of
this information must be acknowledged through complete, accurate, and specific references, and, if verbatim
statements are included, through quotation marks as well. Failure to identify any source (including interviews,
surveys, etc.), published in any medium (including on the internet) or unpublished, from which words, structure,
ideas, or data have been taken, constitutes plagiarism.”

Review the LSU Code of Student conduct at: http://appl003.lsu.edu/elas/dos/nsf/index
From: Lawrence Rouse, Chair, Courses and Curricula Committee

At their January 16, 2014 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the GEOG/ANTH/GEOL proposals:

GEOG/ANTH/GEOL 7943
- The Committee conditionally approved the proposals to add GEOG/ANTH/GEOL 7943 pending a revised syllabus that details the final project. Will the topics be assigned, chosen by the student, etc.? The Committee also wanted to know why the courses were being crosslisted? Is there a reason why GEOG 7943 cannot be included in all programs?

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastr1@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.
REQUEST FOR ADDITION OF NEW COURSE

Department: Geology and Geophysics
College: Science
Date: 10/25/2013

PROPOSED COURSE

Short Title: PALEOCLIMATOLOGY
Rubric & No.: GEOL 7943
Title: Paleoclimatology

COURSE CREDIT

Graduate Credit: X YES NO
Semester Hours of Credit: 3
(Lecture Hrs. Lab/Sem/Rec Hrs.)

If course may be repeated for credit (i.e. special topics), course may be taken for a max. of ___ credit hours.

GRADING

Final Exam: YES X NO
Grading System: X Letter Grade Pass/Fail

(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE

(Indicate hours in the appropriate course type)

<table>
<thead>
<tr>
<th>LEC/REC</th>
<th>LEC/SEM</th>
<th>LEC</th>
<th>LAB</th>
<th>LEC/LAB</th>
<th>SEM</th>
<th>CLIN/PRACT</th>
<th>RES/IND</th>
</tr>
</thead>
</table>

Maximum enrollment per section: 25
(use integer, e.g. 25 not 20-30)

CATALOG TEXT

(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

GEOL 7943 Paleoclimatology (3) See GEOG 7943.

BUDGET IMPACT

If this course is approved, will additional staff be needed? X YES NO
Will additional space, equipment, special library materials or other major expense be involved? X YES NO

(If answer to either question above is "yes" attach explanation.)

ATTACHMENTS

ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria
(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

APPROVALS

Department Faculty Approval: Dec 11 2013
College Faculty Approval: 1/7/14

Department Chair's Signature:
College Dean's Signature:
Chair, FS C&C Committee:
Academic Affairs Approval:

Carol M. Wicks
Department Chair’s Signature: (date)

Graduate Dean’s Signature (for 4000 level and above)
College Contact:
College Contact E-mail:
Date: January 30, 2014
To: Faculty Senate Courses and Curricula Committee
From: Kristine DeLong
RE: GEOG/ANTH/GEOL 7943 Paleoclimatology

Thank you for your comments and suggestions for my submission of a new course GEOG 7943 to the curricula of LSU. I have addressed the items in the memo dated January 16, 2014 below.

I have revise the syllabus to include more details of the final project noted in italics, file attached. Specifically, “I encourage students to have lab-based projects or literature research topics close to their thesis research that involves proxy records. The projects may be laboratory based, either the students own project or a project that instructor provides that is closely aligned to the student’s research interests. Students may elect for a literature review based project with a minimum of 10 peer review papers to be summarized. Students must have their projects approved by the instructor to ensure they are feasible within the time constraints and resources of the PAST lab as well as the learning objectives of the course. The students must demonstrate and/or detail how the principles of paleoclimatology apply to their topic in their projects. In-class participation will include presentation of research papers, discussion of assigned readings, in class learning activities, and presentations.”

The Anthropology professors asked to have the course cross-listed to attract more anthropology students, especially archeologists. There are four anthropology students enrolled in the course currently for Fall 2014 out of 11 total students. The Anthropology masters students have a methods course requirement and this class is considered a methods class, if the student’s advisor agrees the course is appropriate; see below. The cross listing as ANTH 7943 helps fulfill this requirement.

From Geography and Anthropology Graduate Handbook:

Summary of Anthropology Master’s Course Requirements
A minimum of 31 hours is required for the master’s degree. Of those 31, at least 6 hours are thesis hours (ANTH 8000) and 1 hour includes the completion of Introduction to Graduate Study (ANTH 7901). The remaining 24 hours of course work include 9 hours (3 courses) at the 7000 level. Of those 9 hours, at least 6 hours (2 courses) must be earned in seminars. These seminars are generally taken within the department, but seminars can be taken in other departments, in consultation with the student’s major professor. The student must take each seminar from a different faculty member.

1. ANTH 7901 Introduction to Graduate Study
2. ANTH 4085 History of Anthropoligical Thought (or advanced theory course if equivalent already taken)
3. 3 of 4 required 4000-level courses (4020, 4040, 4060, and 4082)
4. 9 hours of 7000-level courses (two of these must be seminars)
5. Methods Course (selected in consultation with advisor-see Form 5)
6. 6 hours of thesis research (ANTH 8000)
Regarding the cross-listing with Geology and Geophysics:
When I submitted the new course request, the CAPPE committee asked for a letter of support from the Department of Geology and Geophysics (G&G). The department Chair Carol Wicks emailed the G&G faculty and there was broad support for the class and they asked if it could be cross-listed with their department. In their letter of support, they asked if the course could be cross-listed as GEOL 7943. Paleoclimatology is a field that is just as closely aligned to geology as it is to geography. This is a course that is focused on Earth history, which is an important part of geology. By cross listing this course, we are accomplishing the following:

1) Offering broader but equally appropriate course choices to students who want a G&G minor (outside the department) and secondary focus (in the G&G department).
2) Strengthening academic and scientific ties between two departments in different colleges, but with complementary research and educational interests.
3) Encouraging graduate students from diverse backgrounds to interact through such inter-departmental courses.

Cross listing will allow Geology and Geophysics students to receive credit to fulfill their degree requirements. In particular, graduate students who want a minor in Geology are required to take nine hours of GEOL courses and cross listing with GEOG 7943 will allow them to fulfill this requirement. For the Ph.D. program in Department of Geology and Geophysics, the students must take four courses in their subdiscipline as a major but only one can be outside the department. Having GEOG 7943 cross-listed as GEOL 7943 would help fulfill that requirement.

From the Department of Geology and Geophysics Graduate handbook:

1.4 Minor in Geology
The department provides for graduate students in other departments to take a minor in Geology and Geophysics. The minor consists of nine (9) hours of graded course work in Geology (GEOL) at the graduate level with at least three (3) hours at the 7000-level in graded course work in Geology (GEOL).

2.2.e PhD Course Requirements:
1) Successful completion of at least 60 semester hours in courses numbered 4000 or above,
2) The Doctoral student must take a minimum of 25 hours of graded course work and seminars beyond the B.S. degree distributed as follows:
a. Major: 4 courses in the subdiscipline identified as the Major. At least two of these courses must be at the 7000-level (12 hours). Up to one of these classes may be taken outside of the department, if approved by the Graduate Advisor and the student’s Major Professor and Dissertation Committee.

From the G&G department:
Additionally, this is a Geography and Anthropology (G&A) course and G&G are responding to outreach from G&A. Because of this, it is appropriate for G&A to take the initiative on this rather than our adding this specific course to our own program. Having this, or other classes cross listed, is effective for G&G because it allows us to keep our program description simpler, in terms of allowing all cross-listed courses for credit, rather than including a large number of courses for G&G credit that do not have G&G course names.
Justification

This course will supplement graduate level work in the department of Geography and Anthropology by providing a new course of study that intersects with climatological and archaeological studies and one that is essential to students specializing in paleoclimatology. Students in Geography and Anthropology, who study past environments on spatial and human scales, will find this course applicable to their academic interests as well as students in other departments at LSU including Geology and Geophysics, Renewable Natural Resources, Environmental Science, Coastal Studies, Oceanography, and History. This course was taught as GEOG 7911 Special Topics in Spring 2011 and had five geology graduate students, one oceanography student, and two students from Archaeology. With the growth of the paleoclimate research program and the PAST lab, the instructor expects additional students will enroll in the course. Lastly, this course includes a seminar portion that will fulfill the requirement for graduate students in Geography and Anthropology to complete seminar courses with different instructors.

A search of the LSU General catalogue did not find any equivalent courses being taught. The closest course is GEOL 7085 Paleoceanography that focuses on lower resolution marine sediment records on longer geological time intervals than the proposed course and that course is focused on only one type of archive record. This proposed course focuses on high-resolution proxy records from both terrestrial and marine sources as well as historical documents. Furthermore, paleoceanography focuses on ocean circulation in the surface and deep ocean whereas paleoclimatology focuses on atmospheric and surface ocean processes. It is my understanding that GEOL 7085 Paleoceanography has not been taught in at least 4 years. I spoke with Carole Wicks, chair of the Department of Geology and Geophysics, when I first taught the special course and she was in support. The Department of Geology and Geophysics Faculty are in support of this course and asked if it can be cross-listed as GEOL 7943.

The prerequisites of GEOG 2050, GEOG 2051 or GEOL 1001, 1003 or OCE 1005 are required so that students have basic understanding of Earth sciences needed for this course. These courses are general education science courses that give students a foundational knowledge of Earth Sciences. GEOG 2050/2051 discusses atmospheric and oceanic processes as well as land forms. GEOL 1001/1003 discusses landforms, earth system processes and Earth history. OCE 1005 introduces students to oceanic processes, history, and circulation.

Regarding final exams: This course is a graduate level course in which students are expected to perform at a highest level. Primary assessment is a research project in paleoclimatology in which the students will present their results in written and oral presentations in which they must demonstrate knowledge of the topics presented in the course. Therefore, no final exam is required during finals weeks so that students can submit with final written paper.
GEOG/ANTH/GEOL 7943—Paleoclimatology
Syllabus from Spring 2014
Mondays and Wednesdays from 4:30 pm - 5:50 PM in Howe-Russell 254 (old building)

Contact Information
Dr. Kristine DeLong (Instructor) Dept. of Geography and Anthropology
E326 Howe-Russell (new building) Office hours: TTh 12-1 pm or by appt.
Email: kdelong@lsu.edu Phone: 225-578-5836

Course Overview
This course will cover the methods of reconstructing climate from biological, geological, and historical archives. The topical focus of GEOG 7943 Paleoclimatology includes: (1) basic concepts in paleoclimatology; (2) in depth discussion of the many types of proxy records used in paleoclimate research; and (3) the development and interpretation of proxy records. Scientific thinking and real-world applications of climatological and ecological information are emphasized, along with an interactive approach to learning through the use of field trips, laboratory hands on experience, in-class active learning environment with multimedia and web resources.

Grades are assigned based on a semester project and in class participation, weighted as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>10%</td>
</tr>
<tr>
<td>Project outline</td>
<td>5%</td>
</tr>
<tr>
<td>Methods</td>
<td>5%</td>
</tr>
<tr>
<td>Results</td>
<td>5%</td>
</tr>
<tr>
<td>Discussion</td>
<td>5%</td>
</tr>
<tr>
<td>In-class activities</td>
<td>30%</td>
</tr>
<tr>
<td>Final Project</td>
<td>40%</td>
</tr>
<tr>
<td>In-class activities</td>
<td>30%</td>
</tr>
</tbody>
</table>

I encourage students to have lab-based projects or literature research topics close to their thesis research that involves proxy records. The projects may be laboratory based, either the students own project or a project that instructor provides that is closely aligned to the student’s research interests. Students may elect for a literature review based project with a minimum of 10 peer review papers to be summarized. Students must have their projects approved by the instructor to ensure they are feasible within the time constraints and resources of the PAST lab as well as the learning objectives of the course. The students must demonstrate and/or detail how the principles of paleoclimatology apply to their topic in their projects. In-class participation will include presentation of research papers, discussion of assigned readings, in class learning activities, and presentations. Final course letter grades will be assigned using a standard A-B-C system, with 90% the lowest A, 80% the lowest S, and 70% the lowest C.

Course Calendar – Spring 2014 (Subject to change)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Dates</th>
<th>Reading</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of climate variability</td>
<td>Jan 15</td>
<td>Chap 2</td>
<td></td>
</tr>
<tr>
<td>No class Jan 20 for MLK day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overview of paleoclimate research</td>
<td>Jan 22</td>
<td>Chap 1</td>
<td></td>
</tr>
<tr>
<td>Dating methods</td>
<td>Jan 27, 29, Feb 3</td>
<td>Chap 3, 4</td>
<td>Topic approved Jan 27</td>
</tr>
<tr>
<td>Proposal presentations</td>
<td>Feb 5</td>
<td>Chap 10</td>
<td>Proposal presentations</td>
</tr>
<tr>
<td>Tree-rings</td>
<td>Feb 10, 12</td>
<td>Chap 10</td>
<td>Written proposals Feb 12</td>
</tr>
<tr>
<td>Stable isotopes</td>
<td>Feb 17, 19</td>
<td>Sharp 1, 2</td>
<td>Outlines Feb 19</td>
</tr>
<tr>
<td>Lab tours</td>
<td>Feb 24, 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mardi Gras Break March 2 – 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice Cores</td>
<td>March 5</td>
<td>Chap 5</td>
<td>Methods March 10</td>
</tr>
<tr>
<td>Marine sediments</td>
<td>March 10, 12</td>
<td>Chap 6</td>
<td></td>
</tr>
<tr>
<td>Corals</td>
<td>March 17, 19</td>
<td>Chap 6</td>
<td></td>
</tr>
<tr>
<td>Cave deposits</td>
<td>March 24, 26</td>
<td>Chap 7</td>
<td></td>
</tr>
<tr>
<td>Mollusks</td>
<td>March 31, April 2</td>
<td>Chap 9</td>
<td>Moodle</td>
</tr>
<tr>
<td>Pollen analysis, AAG meeting</td>
<td>April 7, 9</td>
<td>Chap 9</td>
<td>April 7 Results</td>
</tr>
<tr>
<td>April 14 – 20 Spring Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentary data</td>
<td>April 21, 23</td>
<td>Chap 11</td>
<td></td>
</tr>
<tr>
<td>Climate Models</td>
<td>April 28</td>
<td>Chap 12</td>
<td>April 26 Discussion</td>
</tr>
<tr>
<td>Project presentations</td>
<td>April 30</td>
<td></td>
<td>Presentation</td>
</tr>
<tr>
<td>Finals Week</td>
<td></td>
<td></td>
<td>Papers due May 7</td>
</tr>
</tbody>
</table>

Moodle Course related material will be posted on Moodle. I recommend you check Moodle before each class for last minute updates. Moodle is accessed through your PAWS account https://sso.paws.lsu.edu/login. If you need help with Moodle, contact the Help Desk helpdesk@lsu.edu or http://itsweb.lsu.edu/US/helpdesk/item2424.html.
http://www.geo.umass.edu/climate/paleo/html/ The textbook is currently being revised. Ebook is available at
http://www.elsevierdirect.com/product.jsp?isbn=9780121240103. Additional readings will be posted on Moodle.

Attendance You are expected to every attend class and participate. The evaluation of student performance will include in
class activities and discussions.

Missed Assignments Please respect dates for turning in assignments. I will post an assignment on Moodle for you to
upload any assignments. If you email your assignment, I will send you an email to confirm I received your work. If you do
not get a confirmation, I did not receive your email and your assignment will be considered late if the deadline has past.
You should plan your semester to meet all your obligations, not just for this class. If you have a legitimate excuse, you
must notify the instructor by e-mail or telephone before the assignment is due or when that is logistically impossible, very soon afterwards on the same day. You must prove your excuse in writing (doctor’s note, towing receipt with time
listed, etc.). Conflicts with jobs, other classes, and your personal life are not satisfactory excuses. Personal travel is not,
in any circumstance, a legitimate excuse. Late work will receive a 10% deduction each day it is late. If you are
attending a conference or conducting fieldwork related to your research and you will miss class or a deadline, you must
complete the assignment before you leave and notify the instructor of the dates you will miss.

Class Policies
• Please respect your classmates and instructor by being on time (i.e., arrive before 4:00 PM) and be prepared.
• Cell phones and other electronic devices must be silent during class. You are not allowed to send email or text
messages during class. I will allow laptops for note taking only or you may use the workstations in the classroom.
• Please refrain from personal conversations during class. If you have a question, raise your hand.
• If you must leave class early, please sit near the door and exit quietly.

Expectations I expect graduate students to display professional attitude towards their class work. If you need help with
time management or planning your semester, see me early in the semester so I can help you. I have a lot of experience
with time management and can give you helpful guidance.

Email Policy Email will be a primary means of communication for this course. Students must ensure that their email
address on Moodle is accurate, as important course information will be provided periodically via the Moodle email
interface. Students must make it a point to check their email regularly (at a minimum, before class and 2-3 times per
week) to stay informed of any course news and announcements.
• Address your email message professionally (i.e., written letter with proper spelling and grammar).
• Sign your name at the end of the email with contact information; it is
address. You should have a professional signature setup in your email software for all your emails. See me if need help.
• When making requests for information or assistance, always be polite.

If your email request pertains to the whole class, I reserve the right to forward it to your classmates so that everyone can
benefit.

Physical or Learning Disabilities Any student with a documented disability needing academic adjustments is requested
to speak with the Office of Disability Services and the instructor, as early in the semester as possible. All discussions will
remain confidential. This publication/material is available in alternative formats upon request. Please contact the Office of
Disability Services, 112 Johnston Hall, 225-578-5919. I look forward to talking’ with you soon to learn how I may be helpful
in enhancing your academic success in this course.

Academic Integrity Students are encouraged to share ideas and skills and to freely discuss the principles and
applications of course materials outside of class lectures and exams. However, the guiding principle of academic integrity
is that a student's submitted work must be the student's own.

There is no place or tolerance for cheating in this course.

"Academic Misconduct" shall mean cheating, plagiarism, collusion, falsifying academic records, and all other
actions which are described in Section 8.1.C. or any act or other form of academic dishonesty or omission
designed to give an unfair academic advantage to the student." LSU Code of Student Conduct

Misrepresentation of your own work through plagiarism, collusion, or data distortion is a serious breach of the LSU Code
of Student Conduct, which states:

"Plagiarism" is defined as the unacknowledged inclusion of someone else's words, structure, ideas, or data. When
a student submits work as his/her own that includes the words, structure, ideas, or data of others, the source of
this information must be acknowledged through complete, accurate, and specific references, and, if verbatim
statements are included, through quotation marks as well. Failure to identify any source (including interviews,
surveys, etc.), published in any medium (including on the internet) or unpublished, from which words, structure,
ideas, or data have been taken, constitutes plagiarism.

Review the LSU Code of Student conduct at: http://appl003.isu.edu/slads/dos.nsf/index

2
Martha A Cedotal

Subject: Geol 7943 approved pending items

From: Linda T Strain
Sent: Thursday, January 09, 2014 8:19 AM
To: Carol Wicks
Cc: Martha A Cedotal
Subject: FW: Geol 7943 approved pending items

From: Kristine L DeLong
Sent: Thursday, January 09, 2014 8:03 AM
To: Linda T Strain
Cc: Carol Wicks
Subject: Re: Geol 7943 approved pending items

Geography and anthropology is pleased to have geology and geophysics cross-list their course course GEOG/ANTH 7943.

Kristine DeLong

On Jan 8, 2014, at 3:12 PM, "Linda T Strain" <lstrain@lsu.edu> wrote:

Kristine, I think they will take an email from you?
Thanks,
Linda

From: Carol Wicks
Sent: Wednesday, January 08, 2014 2:09 PM
To: Linda T Strain; Kristine L DeLong
Subject: FW: Geol 7943 approved pending items

Kristine and Linda,

Well, G&G is pushing the form forward for Geol7943 (Geog7943). It seems that YOU or G&A Chair need (needs) to write a letter to G&G stating that it is OK for Geol to cross-list the course.

Carol Wicks

225-578-2692 (office)
225-223-2846 (cell)
Chair and Frank W. and Patricia Harrison Family Professor
Department of Geology and Geophysics
E235 Howe-Russell-Kniffen Geoscience Complex
College of Science
Louisiana State University
Baton Rouge LA 70803
I just spoke with Anna in the Registrar's Office. She does not yet have the Geog 7943 form. She does agree that we should get a very short approval statement from GEOG permitting GEOL to cross-list the course.

Martha
At their January 16, 2014 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the GEOG/ANTH/GEOL proposals:

GEOG/ANTH/GEOL 7943
- The Committee conditionally approved the proposals to add GEOG/ANTH/GEOL 7943 pending a revised syllabus that details the final project. Will the topics be assigned, chosen by the student, etc.? The Committee also wanted to know why the courses were being crosslisted? Is there a reason why GEOG 7943 cannot be included in all programs?

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastrl@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.
REQUEST FOR ADDITION OF NEW COURSE

Division: Computer Science & Engineering Date: 12-9-13
Engineering

College:

PROPOSED COURSE
Rubric & No.: CSC 4740
Title: Big Data Technologies

COURSE CREDIT
Graduate Credit: X YES NO
Semester Hours of Credit: 3
(For combination course types only: Lecture Hrs. Lab/Sem/Rec Hrs.
If course may be repeated for credit (i.e. special topics), course may be taken for a max. of credit hours.
Credit will not be given for this course and:

GRADING
Final Exam: YES X NO
Grading System: X Letter Grade Pass/Fail
(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE
(Indicate hours in the appropriate course type)

Maximum enrollment per section: 30
(use integer, e.g. 25 not 20-30)

CATALOG TEXT
(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

CSC 4740 Big Data Technologies (3) Prereq.: CSC 2730 Advanced analytics and management techniques applied to large-scale datasets; Hadoop/MapReduce, NoSQL and cloud technologies; applied data mining techniques; applications to social, web and mobile data, and bioinformatics.

BUDGET IMPACT
If this course is approved, will additional staff be needed? X YES NO
Will additional space, equipment, special library materials or other major expense be involved? X YES NO
(If answer to either question above is "yes" attach explanation.)

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria
(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

APPROVALS
Department Faculty Approval
12-9-13
College Faculty Approval
12/10/13

Department Chair's Signature
12/12/2013

Graduate Dean's Signature (for 4000 level and above)
(date)

College Contact:

College Contact E-mail:

Academic Affairs Approval
(date)
JUSTIFICATION: CSC 4740 (3) Big Data Technologies

The field of data science and analytics incorporates techniques and theories from diverse areas such as mathematics, biology, statistics, data warehousing, and artificial intelligence to name but a few. As a result of the “digital age”, vast amounts of data are available for extracting actionable intelligence. Therefore, the area of data science and analytics encompasses all requirements including constraints for data management which culminates in the elicitation of knowledge to support human decision making.

When datasets are extremely large and require uncommon software tools to record, manage and process the data, the term “Big Data” is used. Big Data is a specified area of data science and analytics. Our Computer Science & Engineering Division has identified Big Data and related areas as a new area of expertise in which the division would like to grow. Our Industry Advisory Board (November 22, 2013) were very supportive of the proposed course topics and the technical tools utilized in them. Employment opportunities are plentiful and the expertise is lacking in most undergraduate programs.

To incorporate the concepts of Big Data and data analytics into our curricula, the division has developed a new concentration, “Data Science and Analytics”, including required credits in the proposed courses CSC 2730 “Data Science and Analytics” and CSC 4740 “Big Data Technologies”. Planned courses in the area are targeted for STEM-related research and career curriculum tracks.

OVERLAP:

There is overlap in some of the topics contained in CSC 2730 and 4740 in existing LSU catalog courses particularly in the Department of Information Systems and Decision Sciences (ISDS 4112 Data Warehousing; CSC 4402 Introduction to Database Management Systems). Content that is duplicated is related to database design and management and data warehousing.

- The proposed computer science courses emphasize database process modeling, database design and implementation as they relate to the data analytics model.
- Computer science majors are not required to take an introductory course in database development using a technology such as Microsoft Access (CSC 1100, ISDS 1102). CSC 2730 requires SQL as the introductory technology for implementing a database design which is needed for advanced topics.
- CSC 4402 Introduction to Database Management Systems is a high-level course which focuses on broader and more theoretical topics related to database design: E-R models, normalization, query optimization, functional dependencies and relational database design theory. CSC 2730 and 4740 do not cover advanced database topics.
- Content across the proposed concentration, “Data Science and Analytics”, is contained in ISDS 4112 Data Warehousing but no one CSC course is equivalent to it. CSC 2730 includes both database and data warehousing at the 2000-level to create a foundation for advanced upper-level CSC courses. Programming skills are required in CSC 2730 and 4740. ISDS 4112 is excluded from the approved area elective list for the proposed concentration.
- CSC 2730 introduces technology topics at the 2000-level as a context in which to teach the fundamental topics in data science and analytics. Technology expertise is required at the lower level so that students are rigorously prepared for subsequent course(s) in data science and analytics at upper level(s). ISDS courses with similar topics (data warehousing and data mining) are offered at the 4000-level.
- CSC 2730 does not require statistics as a prerequisite as do the ISDS 3+++ level courses (indirectly) but will instead focus on statistical methods and tools for visualizing data.
- CSC courses related to data science and analytics highlight computational analysis and predictive analysis. But some computational skills covered in the one CSC 2730 course are covered in each of ISDS 1100/1102 (Excel/Access), 3110 (relational DB) and 4112 (data warehousing) also.
- CSC 4740 Big Data Technologies has a concentrated topic area in emerging technologies which stresses legal and ethical issues related to collecting and mining data.
EXEMPTION FOR FINAL EXAM:
Instead of a final exam, the student will complete a 4-part cumulative project for 30% of the final grade:
- 50 pts (1/3) design document describing the problem; proposed design plan
- 25 pts (1/6) final document paper
 Describes the characteristics of the system
 Identifies issues related to dataset (four V's); type of data
 Identifies technologies; plan for visualizing the data
- 25 pts (1/6) presentation (last week of classes)
- 50 pts (1/3) Implementation
Rubrics will be set defining objectives for the project components.

BUDGETARY CONCERNS:
Current size and expertise of the CSC_E faculty, whose first priority is to schedule the required core CSC classes, is limiting the effective scheduling of courses related to Big Data, data science, analytics, and other related topics. The faculty and the Office of the Dean of Engineering are supportive of faculty hiring in the research area and to support new courses along with the proposed concentration. With the Dean's approval an adjunct instructor has been hired (Spring 2014) who is an expert practitioner in the field. CSC 2730 is the first course targeted to be scheduled.

By utilizing current faculty members and industry experts in a team teaching-paradigm, resources are available to teach CSC 2730 as early as Spring 2014 or Fall 2014. But to fully support the proposed courses and enhance the new concentration to its best potential, additional full-time faculty members are needed who are experts in the area and who can share the teaching load of the essential CSC classes.
SYLLABUS
CSC 4740 Big Data Technologies

Catalog Description:
CSC 4740 Big Data Technologies (3 credit hours) Advanced analytics and management techniques applied to large-scale datasets; Hadoop/MapReduce, NoSQL and cloud technologies; applied data mining techniques; applications to social, web, and mobile data, and bioinformatics.

Prerequisites: strong programming background (2-course sequence); CSC 2730

Course Coordinator: Prof. Rahul Shah; rahul@csc.tusu.edu; 3122A Patrick F. Taylor Hall

Learning Objectives:
1. Define concepts and terminology related to Big Data
2. Describe the attributes including benefits of a distributed system and of cloud computing
3. Distinguish Big Data systems and frameworks
4. Describe algorithms for use in Big Data solutions
5. Design a solution using a MapReduce algorithm(s)
6. Explain relevance and application of data mining regarding Big Data
7. Design and implement a database interface and solution
8. Describe future trends and applications regarding Big Data
7. Formulate a critique regarding the legal and ethical issues related to collecting and mining data.

Reference Texts:

Suggested Reading:

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, Introduction to Data Mining, Addison-Wesley April 2005.

Grading:

<table>
<thead>
<tr>
<th>Total Percentage Points:</th>
<th>Final Grading Scale:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment (5 total)</td>
<td>A (90% and above)</td>
</tr>
<tr>
<td></td>
<td>B (80% < 90%)</td>
</tr>
<tr>
<td>Midterm</td>
<td>C (70% < 80%)</td>
</tr>
<tr>
<td>Project (1 total)</td>
<td>D (60% < 70%)</td>
</tr>
<tr>
<td>(proposal; implementation; presentation)</td>
<td>F (< 60%)</td>
</tr>
</tbody>
</table>
The assignments (40%) of the final grade are diverse exercises that are expected to begin with fundamentals like data building and extend to advanced programming concepts and techniques. The number of assignments and the combination of technologies per assignment is expected to vary each semester according to the problem scenarios for each assignment.

Project:

4 part cumulative project

- 50 pts (1/3) design document describing the problem; proposed design plan
- 25 pts (1/6) final document paper
 - Describes the characteristics of the system
 - Identifies issues related to dataset (four V's); type of data
 - Identifies technologies; plan for visualizing the data
- 25 pts (1/6) presentation (last week of classes)
- 50 pts (1/3) Implementation

The final project (30%) is expected to be the culmination of the major objectives of the course incorporating advanced algorithms and technologies into a database solution including interface. In first half of the semester, lectures will focus on introduction to the fundamentals and to technologies assessed through multiple assignments; the remaining part of the semester will emphasize the design and creation of the final project with less emphasis on assignments/exercises.

Example Technologies for Assignments/Projects (tentative)

- **NoSql; H-base (assignment example)**
 Creating an Hbase table for example data set (e.g., text data) using column based storage. Using it to store top-k using bloom filters. Querying with NoSQL. Performance comparison with standard relational databases.

- **Hadoop/MapReduce (basic programming example)**
 Implementing basic sorting and searching of key-value pairs of data using Hadoop (or other open source) implementation of MapReduce paradigm. Using its features to solve basic problems involving sorting (e.g., finding most frequent elements, clustering, classification).

- **Hadoop/MapReduce (advanced programming example)**
 Creating indexes for bigdata (e.g., text collection from web, protein or genome sequences). Building a mini search engine with advanced query functionality.

- **Stream mining/ text mining with Apache Mahout (final project example)**
 Implementing semantic searching using data mining algorithms for the example data (e.g., text or bioinformatics or movie recommendations) using Mahout as a tool. Implementing collaborative filtering and/or classification algorithms.

Class Policy:

- All submitted work for grading is the work of only the individual student except for the final project.
- Programming exercises are submitted to the classes.csc.lsu.edu server.
- Due dates are as indicated on the homeworks/programs/ project.
- Missed deadlines or tests are handled on an individual basis with the approval of the Dean's Office.
- All problems with grading must be resolved within 3 class days of returning the work.
- If class is missed, detailed notes and class content must be acquired from a classmate.

Student Class Participation:
The class meets for a total of 3 hours per week which constitutes a 3 hour credit course. While notes and reference materials may be posted via Moodle, the class is not designed as online-based; students are expected to attend class. Absences should be rare and exceptional. Students are expected to have read the assigned chapters or pages prior to class for the background necessary to properly participate in the discussion and think critically about the concepts addressed. As a general policy, for each hour you are in class, you (the student) should plan to spend at least two hours preparing for the next class. Since this course is for three credit hours and a 4000-level course, you should expect to spend around six to eight hours outside of class each week in activities such as reading, writing homework assignments, and/or completing programming-based exercises for the class.

Weekly Topic Outline:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Syllabus; Introduction; Applications (ex. Amazon Elastic Compute Cloud – Amazon EC2) Distributed Systems and Cloud computing overview</td>
</tr>
<tr>
<td>2</td>
<td>Big Data Analysis Systems and Frameworks: Best Practices; Example datasets; prescriptive analytics Big data at rest/ in motion; four V's (Volume, velocity, variety and veracity); structured and unstructured data; uncertain data; high-dimensional data MapReduce (Mahout; Spark/Shark); Parallel DB (MADLib, Tuffy/Felix); GraphLab, SciDB, DataPath</td>
</tr>
<tr>
<td>3</td>
<td>MapReduce Algorithms; scalable machine learning algorithms for collaborative filtering, clustering and classification Visualization Google charts and R (http://code.google.com/p/google-motion-charts-with-r/)</td>
</tr>
<tr>
<td>4</td>
<td>Analysis Models and Algorithms</td>
</tr>
<tr>
<td>5</td>
<td>Review database evolution; SQL & NoSql; Polyglot persistence Introduction to data mining, functional programming (ex. Python), data stream analysis; unsupervised learning; dimensionality reduction; clustering analysis; rules implemented in large databases</td>
</tr>
<tr>
<td>6</td>
<td>Continued Databases</td>
</tr>
<tr>
<td>7</td>
<td>Midterm</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to Hadoop; Apache HBase (linear and modular scalability; consistent reads and writes; shared tables; metrics)</td>
</tr>
<tr>
<td>9</td>
<td>Continued Hadoop</td>
</tr>
<tr>
<td>10</td>
<td>Continued Hadoop</td>
</tr>
<tr>
<td>11</td>
<td>Continued Hadoop</td>
</tr>
<tr>
<td>12</td>
<td>Emerging Big Data Analytics Trends and Applications: Crowd-sourcing; human intelligence; probabilistic DB; knowledge bases; data integration; Electronic Medical Records (EMR); bioinformatics; text; social media; the Web; etc.</td>
</tr>
<tr>
<td>13</td>
<td>Continued Emerging Trends Legal and ethical issues related to collecting and mining data</td>
</tr>
<tr>
<td>14</td>
<td>Project Presentations</td>
</tr>
</tbody>
</table>
Faculty Senate Courses and Curricula Committee

January 16, 2014

From: Lawrence Rouse, Chair, Courses and Curricula Committee

At their January 16, 2014 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the CSC proposals:

Data Science and Analytics Concentration
- The Committee conditionally approved the proposal to add the Data Science and Analytics concentration pending a letter of support from ISDS. The Committee could not find the approval from ISDS stating that ISDS 3105, 4118, and 4141 could be offered in the program.

CSC 2730 and 4740
- The Committee conditionally approved the proposals to add CSC 2730 and 4740 pending revised syllabi that detail the projects in the courses. In CSC 4740, the Committee suggested inserting the description of the final project within the justification into the syllabus. This should also be used as an example for CSC 2730.

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastril@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.