REQUEST FOR ADDITION OF NEW COURSE

Department: Construction Management
College: Engineering

PROPOSED COURSE
Short Title: Introduction to Construction Management
Rubric & No.: CM 1011

COURSE CREDIT
Graduate Credit: YES X NO
Semester Hours of Credit: 3

If course may be repeated for credit (i.e. special topics), course may be taken for a max. of ___ credit hours.

Credit will not be given for this course and:

GRADING
Final Exam: X YES NO Grading System: Letter Grade Pass/Fail

COURSE TYPE
(Indicate hours in the appropriate course type)

CATALOG TEXT
(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

1011 Introduction to Construction Management (3). A survey of the construction industry to include an orientation to essential elements of professional practice and development in construction management.

BUDGET IMPACT
If this course is approved, will additional staff be needed? YES X NO
Will additional space, equipment, special library materials or other major expense be involved? YES X NO

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria
(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

APPROVALS
Department Faculty Approval 3/18/13 (date)
Department Chair's Signature 4/11/13 (date)
College Faculty Approval 4/24/13 (date)
College Dean's Signature 5/10/13 (date)
Graduate Dean’s Signature (for 4000 level and above) 7/12/13 (date)
College Contact: [Please print name]
College Contact E-mail:

Academic Affairs Approval 7/13 (date)
The Department of Construction Management (CM) is requesting the creation of a new course titled Introduction to Construction Management. This course is vital to the curriculum revisions taking place within the department. This course will serve as the entrance point into the CM curriculum, and will provide students with the knowledge necessary to be successful within the program and their careers.

This course is designed to assist students in both their college and work careers. This course will insure that students are aware of departmental policies and procedures in their first CM course. Students will be exposed the different types of construction in which they can specialize as they select more advanced courses later in their curriculum. This course will also explore the different career paths available to students after they graduate so that they may make a more informed decision in CM course electives selection. This course is also designed to build communication skills by introducing students to the CxC program and encourage them to participate through the creation of a digital portfolio. Beginning the CxC process as a freshman is generally critical to successfully obtaining Distinguished Communicator status upon graduation.

Currently, this course does not duplicate any other existing courses on the LSU campus. No overlap between this course and those offered by other departments exists.
Term: Fall/Spring/Summer

Class Time & Location: TBA

Faculty: Stephanie Heumann
3130 B Patrick F. Taylor, sheumann@lsu.edu

Office Hours: Faculty Office Hours

Website: Moodle or similar

Catalog Course Description: Introduction to Construction Management (3) 3 hrs. lecture. A survey of the construction industry to include an orientation to essential elements of professional practice and development in construction management.

Course Objectives & Outcomes: The goal of this course is to familiarize students with construction-related regulatory requirements, ethics, business operations, safety, and personnel practices such as management techniques and interaction with professional organizations and associations. Following successful completion of this course, students will be able to:
1. Identify the typical entities involved in the construction process, their interrelationships, and some of the laws and regulations involved.
2. Identify the terms and definitions germane to the practical aspects of conducting and managing construction activities.
3. Describe the need for particular types of knowledge and information related to specific construction business activities and how to go about obtaining the necessary information.
4. Describe the role & general purpose of contract documents, estimating, scheduling and other typical construction practices.
5. Interpret specific rules and regulations that govern business, ethical and professional practices within the construction field.
6. Assignments to include interviews with Industry professionals, local building authorities, local organizations (CRBA, CIAC, ABC) preparing schedules for various construction jobs, drafts of letters and memos relative to the topics covered.
7. Create a digital portfolio to highlight written, oral, visual, and technical communication skills required for a construction manager. (FINAL PROJECT)

Grading Scale:
- Exam 1: 20% (A 90-100%; B 80-89.5%; C 70-79.5%; D 60-69.5%; F 0-59.5%)
- Exam 2: 20%
- Exam 3: 20%
- Final Exam: 20%
- Assignments: 10%
- Final Project: 10%

100%
Course: Construction Project Management: A Complete Introduction by Alison Dykstra

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course Introduction</td>
</tr>
<tr>
<td>1</td>
<td>Construction Department Policies and Procedures</td>
</tr>
<tr>
<td>2</td>
<td>Types of Construction</td>
</tr>
<tr>
<td>2</td>
<td>Construction Career Paths</td>
</tr>
<tr>
<td>3</td>
<td>Oral, Written, Visual, and Technical Communication Techniques with Digital Portfolios</td>
</tr>
<tr>
<td>3</td>
<td>Oral, Written, Visual, and Technical Communication Techniques with Digital Portfolios</td>
</tr>
<tr>
<td>4</td>
<td>Types of Plans and Plan Reading</td>
</tr>
<tr>
<td>4</td>
<td>Types of Plans and Plan Reading</td>
</tr>
<tr>
<td>5</td>
<td>CSI 16 and 50 Division Specification Formats</td>
</tr>
<tr>
<td>5</td>
<td>CSI 16 and 50 Division Specification Formats</td>
</tr>
<tr>
<td>6</td>
<td>Estimating & Scheduling in Construction</td>
</tr>
<tr>
<td>6</td>
<td>Estimating & Scheduling in Construction</td>
</tr>
<tr>
<td>7</td>
<td>Permit and Inspection Process</td>
</tr>
<tr>
<td>7</td>
<td>Permit and Inspection Process</td>
</tr>
<tr>
<td>8</td>
<td>Construction Project Documentation</td>
</tr>
<tr>
<td>8</td>
<td>Construction Project Documentation</td>
</tr>
<tr>
<td>9</td>
<td>The Role of Software in the Construction Process (BIM, CAD, P6, Timberline, etc.)</td>
</tr>
<tr>
<td>9</td>
<td>The Role of Software in the Construction Process (BIM, CAD, P6, Timberline, etc.)</td>
</tr>
<tr>
<td>10</td>
<td>Job Procurement and the Bid Process</td>
</tr>
<tr>
<td>10</td>
<td>Job Procurement and the Bid Process</td>
</tr>
<tr>
<td>11</td>
<td>Project Delivery Techniques (Design-Build, Design-Bid-Build, etc.)</td>
</tr>
<tr>
<td>11</td>
<td>Project Delivery Techniques (Design-Build, Design-Bid-Build, etc.)</td>
</tr>
<tr>
<td>12</td>
<td>Formal Written Communication Formats in the Construction Process</td>
</tr>
<tr>
<td>12</td>
<td>Formal Written Communication Formats in the Construction Process</td>
</tr>
<tr>
<td>13</td>
<td>The Role of Safety in Construction</td>
</tr>
<tr>
<td>13</td>
<td>The Role of Safety in Construction</td>
</tr>
<tr>
<td>14</td>
<td>Ethical Issues in Construction</td>
</tr>
<tr>
<td>14</td>
<td>Ethical Issues in Construction</td>
</tr>
</tbody>
</table>
At their June 20, 2013 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the CM proposals:

CM 1011
- The Committee conditionally approved the proposal to add CM 1011 pending a revised syllabus that deletes ""C" or better" from within the course description on the first page. This is not included in the course description on the proposal. The Committee also requested a description of the assignments component.

CM 1102
- The Committee conditionally approved the proposal to add CM 1102 pending a revised syllabus that deletes ""C" or better" from within the course description on the first page. This is not included in the course description on the proposal. The Committee also requested a description of the assignments component and how this course fits into the lecture/lab format. The syllabus should clearly explain what the lecture and lab components are to the student.

CM 2101
- The Committee conditionally approved the proposal to change CM 2101. The Committee requests the term “LSU Online student” be removed from the course prerequisites and replace it with “consent of department”. The department may need to offer this course on campus in the future. The Committee also requests a revised syllabus editing Policy #1 to reflect university regulations.

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastrl@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at irouse@lsu.edu.
REQUEST FOR ADDITION OF NEW COURSE

Department: Construction Management	 Date: 4/16/13
College: Engineering

PROPOSED COURSE
Short Title: Construction Plan Reading
Rubric & No.: CM 1102
Title: Construction Plan Reading

COURSE CREDIT
Graduate Credit: YES X NO
Semester Hours of Credit: 3
(For combination course types only: 2 Lecture Hrs. 2 Lab/Sem/Rec Hrs.
If course may be repeated for credit (i.e. special topics), course may be taken for a max. of credit hours.
Credit will not be given for this course and:

(Indicate rubrics and course numbers)

GRADING
Final Exam: X YES NO Grading System: x Letter Grade Pass/Fail
(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE
(Indicate hours in the appropriate course type)

<table>
<thead>
<tr>
<th>LEC/REC</th>
<th>LEC/SEM</th>
<th>LEC</th>
<th>LAB</th>
<th>2/2</th>
<th>LEC/LAB</th>
<th>SEM</th>
<th>CLIN/PRAC</th>
<th>RES/IND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum enrollment per section: 50
(use integer, e.g. 25 not 20-30)

CATALOG TEXT
(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)
1102 Construction Plan Reading (3) 2 hrs lecture; 2 hrs lab. Principles of graphic communication applied to reading construction plans with emphasis on residential, commercial, industrial, and heavy highway plans.

BUDGET IMPACT
If this course is approved, will additional staff be needed? YES X NO
Will additional space, equipment, special library materials or other major expense be involved? YES X NO
(If answer to either question above is 'yes' attach explanation.)

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria
(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students)

APPROVALS
Department Faculty Approval 4/8/13
College Faculty Approval 4/24/13

Graduate Dean’s Signature (for 4000 level and above) (date)

College Contact: _____________________________ (Please print name:)

College Contact E-mail: ________________________

Academic Affairs Approval (date)
CM 1102
JUSTIFICATION

A justification for the request for the new course should be included along with the course description. The justification should explicitly state how this course will fit into the current curriculum. The extent to which this proposed course will duplicate other courses offered on the campus must be addressed. Statements from other departments regarding any possible overlap between the proposed course and existing courses must be included.

The Department of Construction Management (CM) is requesting the creation of a new course titled Construction Plan Reading. This course is vital to the curriculum revisions taking place within the department. This course will serve as the entrance point into the CM curriculum, and will provide students with the knowledge necessary to be successful within the program and their careers.

This course is designed to assist students in gaining the knowledge and skills necessary to read and interpret construction documents which utilize standard engineering graphic techniques as commonly found in the construction industry. The ability to communicate and interpret information utilizing graphic communication techniques and concepts is vital to the construction management profession as well as to CM students who will be utilizing these skills in the rest of their CM courses.

It should be noted that this course is being designed to replace CM 1010 as it does currently duplicate some of the course content in CM 1010. Otherwise, this course does not duplicate any other existing courses on the LSU campus. No overlap between this course and those offered by other departments exists.
CM 1102
Construction Plan Reading

<table>
<thead>
<tr>
<th>TERM</th>
<th>Fall/Spring/Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS TIME</td>
<td>TBA</td>
</tr>
<tr>
<td>& LOCATION</td>
<td>Faculty Name</td>
</tr>
<tr>
<td></td>
<td>Office Location, Email, Office Phone</td>
</tr>
<tr>
<td>FACULTY</td>
<td>Faculty Office Hours</td>
</tr>
<tr>
<td>OFFICE HOURS</td>
<td>Moodle or similar</td>
</tr>
</tbody>
</table>

CATALOG	Construction Plan Reading (3) 2 hrs. lecture; 2 hrs. lab. Principles of graphic communication are applied to reading construction plans with emphasis on residential, commercial, industrial, and heavy highway plans.
COURSE DESCRIPTION	The goal of this course is to familiarize students with techniques for measuring items of construction work from plans and specifications. Also covered are basic sketching techniques and an introduction to BIM applications. Following successful completion of this course, students will be able to:
OBJECTIVES & OUTCOMES	1. Identify concepts and techniques of graphic communication. 2. Interpret working drawings of a residential structure. 3. Interpret working drawings of a commercial structure. 4. Interpret working drawings of piping projects. 5. Interpret working drawings of structural steel projects. 6. Interpret working drawings of industrial concrete projects. 7. Interpret working drawings of a highway project.

GRADING SCALE	Exam #1 30%
	Exam #2 30%
	Final Exam 30%
	Assignments 10%

<table>
<thead>
<tr>
<th>Course Materials and Resources</th>
<th>Construction Graphics: A Practical Guide to Interpreting Working Drawings by Keith Bisharat</th>
</tr>
</thead>
</table>
Exams (90%)
Two exams (30% each) will be given during the class period indicated on the schedule. The final exam (30%) will be given at the time designated by the University and will be comprehensive. You will need to provide a small scantron (4.25x11) and a number 2 pencil to take each of these exams.

Assignments (10%)
This course will utilize lab time to explore the role of Building Information Modeling (BIM) in plan reading and the construction process. There will be several assignments focusing on typical construction projects. It is intended that these projects will span several class periods and require outside lab work. Projects will be graded according to their accuracy and completeness. Projects will include manipulating 3D models in a BIM environment to access data relative to but not limited to floor plans, elevations, foundation plans, roof plans, wall sections, cabinet details, site plan, and applicable schedules.

NOTE: NEATNESS COUNTS ON EVERYTHING SUBMITTED FOR THIS CLASS!

University/Department/Course Policies:
1. No eating or drinking or use of tobacco products is allowed in CM classrooms.
2. Turn cell phones off, or place on the silent mode. Do not take calls or reply to messages in class.
3. Attendance and participation are required. In the event of an absence, it is the student’s responsibility to obtain lecture notes and assignments, and otherwise compensate for whatever may have been missed. There are no make-up quizzes. All assignments turned in late will have one letter grade deducted for every day that they are late.
4. Academic dishonesty will be dealt with according to university regulations and policy. It is each student’s responsibility to understand these regulations. Students may help one another on assignments. However, copying a file from someone else, turning in someone else’s work as your own, or allowing your work to be copied by someone else is considered cheating.
5. Copied or plagiarized work will not be accepted. Students are responsible for citing all work properly. Proper citation and attribution is expected for all non-original material submitted. Students are expected to be familiar with the plagiarism policy as set forth by the university in the Code of Student Conduct (Louisiana State University, 2009). For more information about plagiarism, the different types of plagiarism or how to cite sources properly refer to http://www.plagiarism.org/.
6. Students are expected to assist in maintaining a classroom environment that is conducive to learning. To create an environment in which learning is the primary objective, students are asked to refrain from disruptive behaviors, tardiness, leaving early, sleeping, prolonged visiting with other students, and making inappropriate or offensive remarks. This is not a comprehensive list – in general, treat others with respect.
7. Campus-based and/or web-based library usage is required.

Class Contacts
Record the names, phone numbers, and email addresses of some of your classmates. These members of the class are valuable resources for notes, assignments, announcements, etc. that are needed in the case of an absence from class.

Student Name: ___________________ Phone Number: ___________ E-Mail Address: ___________________ @tigers.lsu.edu

Student Name: ___________________ Phone Number: ___________ E-Mail Address: ___________________ @tigers.lsu.edu
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course Introduction</td>
</tr>
<tr>
<td>1</td>
<td>Graphic Communication Principles and Visualization Techniques</td>
</tr>
<tr>
<td>2</td>
<td>Graphic Communication Principles and Visualization Techniques</td>
</tr>
<tr>
<td>2</td>
<td>Graphic Communication Principles and Visualization Techniques</td>
</tr>
<tr>
<td>3</td>
<td>Residential Working Drawings</td>
</tr>
<tr>
<td>3</td>
<td>Plans and Elevations</td>
</tr>
<tr>
<td>4</td>
<td>Sections, Details, and Specifications</td>
</tr>
<tr>
<td>4</td>
<td>BIM Residential</td>
</tr>
<tr>
<td>5</td>
<td>Commercial Working Drawings</td>
</tr>
<tr>
<td>5</td>
<td>Plans and Elevations</td>
</tr>
<tr>
<td>6</td>
<td>Sections and Details</td>
</tr>
<tr>
<td>6</td>
<td>BIM Commercial</td>
</tr>
<tr>
<td>7</td>
<td>Piping Working Drawings</td>
</tr>
<tr>
<td>7</td>
<td>Plans, Elevations, Valves, Flanges, Fittings, and Instruments</td>
</tr>
<tr>
<td>8</td>
<td>P&ID’s, Flow Diagrams, Isometric Spools, and Shop Drawings</td>
</tr>
<tr>
<td>8</td>
<td>BIM Piping</td>
</tr>
<tr>
<td>9</td>
<td>Structural Steel Working Drawings</td>
</tr>
<tr>
<td>9</td>
<td>Plans and Elevations</td>
</tr>
<tr>
<td>10</td>
<td>Steel Shapes and Connections</td>
</tr>
<tr>
<td>10</td>
<td>BIM Structural</td>
</tr>
<tr>
<td>11</td>
<td>Industrial Concrete Working Drawings</td>
</tr>
<tr>
<td>11</td>
<td>Plans and Elevations</td>
</tr>
<tr>
<td>12</td>
<td>Precast Shapes, Pre and Post Tension</td>
</tr>
<tr>
<td>12</td>
<td>BIM Industrial Concrete</td>
</tr>
<tr>
<td>13</td>
<td>Highway Working Drawings</td>
</tr>
<tr>
<td>13</td>
<td>Plans and Profiles</td>
</tr>
<tr>
<td>14</td>
<td>Roads and Bridges</td>
</tr>
<tr>
<td>14</td>
<td>BIM Highway</td>
</tr>
</tbody>
</table>
REQUEST FOR ADDITION OF NEW COURSE

Department: Mathematics Date: 5/2/2013
College: Science

PROPOSED COURSE
Rubric & No.: MATH 7220 Title: Commutative Algebra

COURSE CREDIT
Graduate Credit: X YES NO
Semester Hours of Credit: 3 (For combination course types only: Lecture Hrs. Lab/Sem/Rec Hrs.
If course may be repeated for credit (i.e. special topics), course may be taken for a max. of _ credit hours.
Credit will not be given for this course and: ____________________________

GRADING
Final Exam: X YES NO Grading System: X Letter Grade Pass/Fail
(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE
(Indicate hours in the appropriate course type)

Maximum enrollment per section: 25 (use integer, e.g. 25 not 20-30)

CATALOG TEXT
(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

7220 Commutative Algebra (3)
Prereq: Math 7211. Commutative rings and modules, prime ideals, localization, noetherian rings, primary decomposition, integral extensions and Noether normalization, the Nullstellensatz, dimension, flatness, graded rings, Hilbert polynomial, valuations, regular rings, homological dimension, depth, completion, Cohen-Macaulay modules.

BUDGET IMPACT
If this course is approved, will additional staff be needed? X YES NO
Will additional space, equipment, special library materials or other major expense be involved? X YES NO
(if answer to either question above is "yes" attach explanation.)

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION. Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?
SYLLABUS: including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria
(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

APPROVALS
Department Faculty Approval 4/29/2013 College Faculty Approval 6/4/13
(date) (date)

Department Chair's Signature ____________________________ College Dean's Signature ____________________________
(date) (date)

Graduate Dean's Signature (for 4000 level and above) ____________________________ Chair, FS & C Committee ____________________________
(date) (date)

College Contact: Kim Kubicek
(Please print name)

College Contact E-mail: kkubicek@lsu.edu

Academic Affairs Approval ____________________________
Justification for the request for addition of
Math 7220: Commutative Algebra

Commutative algebra is one of the standard graduate courses in algebra. The Department of Mathematics has offered a basic commutative algebra course regularly as a section of Math 7280 (Seminar in Commutative Algebra), a course number more appropriate for higher level seminars and less standard courses. Accordingly, we propose the addition of a dedicated course number for the department's basic commutative algebra class.
Commutative Algebra–Math 7220

Text: *Commutative Algebra with a View Towards Algebraic Geometry* by David Eisenbud.

Prerequisites: Math 7211 or permission of the instructor.

Course Description:

Commutative algebra is a branch of algebra that studies commutative rings and modules over such rings. Both algebraic number theory and algebraic geometry are based on commutative algebra.

This class will provide an introduction to commutative algebra. The course will follow this approximate outline:

1. Introduction to commutative rings and the prime spectrum. (1 week)
2. The category of modules over a commutative ring, including exact sequences, tensor products, and spaces of homomorphisms, and Nakayama’s Lemma. (1 week)
3. Localization of rings and modules. (1 week)
4. Integral extensions, including the going-up and going-down theorems, and the Nullstellensatz. (2 weeks)
5. Noetherian and Artinian rings. (2 weeks)
6. Primary decomposition. (1 week)
7. Discrete valuation rings and Dedekind domains. These are the rings of most importance in algebraic number theory. (2 weeks)
8. Completions. (1 week)
9. Dimension theory and regular local rings. (2 weeks)
10. Differentials. (1 week)

Grading: Grading will be based on weekly problem sets and a final exam worth 70% and 30% of the total grade respectively.

Grading scale: 90-100 A, 80-89 B, 70-79 C, 60-69 D, 0-59 F.
From: Lawrence Rouse, Chair, Courses and Curricula Committee

At their June 20, 2013 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the MATH proposals:

MATH 7410
- The Committee approved the proposal to add MATH 7410 but wanted to know if "or equivalent" within the course prerequisite list was necessary. The Department would prefer to retain the "or equivalent" within the course prerequisite.

MATH 7366
- The Committee approved the proposal to add MATH 7366 pending the submission of a revised syllabus that deletes the MATH 7311 from the prerequisites within the course description. Also, the committee wanted to know if the department wishes to add "consent of instructor" to the list of prerequisites for the course. The revised syllabus is attached. The Department does not wish to add "consent of instructor" to the prerequisite.

MATH 7220
- The Committee conditionally approved the proposal to add MATH 7220 pending the deletion of "may be repeated for credit with consent of department for a max. of 9 credit hrs." The Committee also requested that the words "topics in" be removed from the course description to note that this course is a stand-alone course not a special topics course. The revisions have been made in the attached revised proposal.

MATH 7230, 7240, 7250, and 7260
- The Committee conditionally approved the proposals to add MATH 7230, 7240, 7250, and 7260 pending a justification for each explaining why each course may have multiple topics during different semesters. These courses should be made into "Special Topics" courses. The Committee requested that the MATH department decide which of these four courses should be stand-alone courses or special topics courses. Essentially, a special topics course is a course that will vary by topic over different semesters, thus being repeatable. Dr. Adkins suggested that a few of these courses should be fixed courses that do not vary by topic each semester. The Department is requesting that Math 7230 and 7240 retain the topics designation. The revised proposals with the additional justification requested are attached. The Department is requesting that the proposals for Math 7250 and 7260 be switched to a single course (rather than topics). The attached proposals have been changed to reflect this new format.
REQUEST FOR ADDITION OF NEW COURSE

Department: Mathematics
College: Science

Date: 5/2/2013

PROPOSED COURSE
Rubric & No.: MATH 7230
Title: Topics in Number Theory

COURSE CREDIT
Graduate Credit: X YES NO

Semester Hours of Credit: 3

Lecture Hrs. Lab/Sem/Rec Hrs.

If course may be repeated for credit (i.e. special topics), course may be taken for a max. of 9 credit hours.

Credit will not be given for this course and:

GRADING
Final Exam: NO
Grading System: LETTER Grade Pass/Fail

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

SYLLABUS:
Including 14 week outline of the subject matter, titles of text, lab manual, and/or required readings; grading scale and criteria
(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

CATALOG TEXT
Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

7230 Topics in Number Theory (3)
Prereq: Math 7211. May be repeated for credit with consent of department for a max. of 9 credit hrs. Topics in number theory, such as algebraic integers, ideal class group, Galois theory of prime ideals, cyclotomic fields, class field theory, Gauss sums, quadratic fields, local fields, elliptic curves, L-functions and Dirichlet series, modular forms, Dirichlet's theorem and the Prime Number theorem, Diophantine equations, Circle method.

BUDGET IMPACT
If this course is approved, will additional staff be needed? YES NO
Will additional space, equipment, special library materials or other major expense be involved? YES NO

(If answer to either question above is 'yes attach explanation.

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter, titles of text, lab manual, and/or required readings; grading scale and criteria
(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

APPROVALS
Department Faculty Approval College Faculty Approval

Department Chair's Signature College Dean's Signature

Graduate Dean's Signature (for 4000 level and above)

College Contact:

College Contact E-mail:

Please print name:

Academic Affairs Approval
Justification for the request for addition of Math 7230: Topics in Number Theory

Number Theory is one of the standard graduate courses in algebra. The Department of Mathematics has offered a basic number theory courses regularly as a section of Math 7290 (Seminar in Algebra and Number Theory), a course number more appropriate for higher level seminars and less standard courses. Accordingly, we propose the addition of a dedicated course number for the department’s basic number theory class.

The attached sample syllabus is for a topics course focused on algebraic number theory. Additional topics could include (1) courses focused on analytic number theory including Dirichlet series and the prime number theorem or (2) a course focused on class field theory.
Topics in Number Theory–Math 7230

Text: Algebraic Number Theory by James S. Milne.

Prerequisites: Math 7211 or permission of the instructor.

Course Description:

Algebraic number theory is the study of the arithmetic of algebraic number fields—finite extensions of the rational numbers. In particular, it studies the ring of integers of an algebraic number field, including their ideal structure and units and the extent to which unique factorization holds.

This class will provide an introduction to algebraic number theory. The course will follow this approximate outline:

1. Rings of integers of algebraic number fields. (1 week)
2. Discrete valuation rings and Dedekind domains, the ideal class group, factorization, ramification. (2 weeks)
3. Finiteness of the class number. (2 weeks)
4. The unit theorem. (2 weeks)
5. Cyclotomic extensions. (1 week)
6. Absolute values and local fields. (2 weeks)
7. Decomposition and inertia groups and the Frobenius element. (1 week)
8. Zeta functions. (1 week)
9. Dirichlet density, the Frobenius density theorem, and Dirichlet’s theorem on arithmetic progressions. (2 weeks)

Grading: Grading will be based on weekly problem sets and a final exam worth 70% and 30% of the total grade respectively.

Grading scale: 90-100 A, 80-89 B, 70-79 C, 60-69 D, 0-59 F.
Faculty Senate Courses and Curricula Committee

From: Lawrence Rouse, Chair, Courses and Curricula Committee

At their June 20, 2013 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the MATH proposals:

MATH 7410
- The Committee approved the proposal to add MATH 7410 but wanted to know if “or equivalent” within the course prerequisite list was necessary. The Department would prefer to retain the “or equivalent” within the course prerequisite.

MATH 7366
- The Committee approved the proposal to add MATH 7366 pending the submission of a revised syllabus that deletes the MATH 7311 from the prerequisites within the course description. Also, the committee wanted to know if the department wishes to add “consent of instructor” to the list of prerequisites for the course. The revised syllabus is attached. The Department does not wish to add “consent of instructor” to the prerequisite.

MATH 7220
- The Committee conditionally approved the proposal to add MATH 7220 pending the deletion of “may be repeated for credit with consent of department for a max. of 9 credit hrs.” The Committee also requested that the words “topics in” be removed from the course description to note that this course is a stand-alone course not a special topics course.

MATH 7230, 7240, 7250, and 7260
- The Committee conditionally approved the proposals to add MATH 7230, 7240, 7250, and 7260 pending a justification for each explaining why each course may have multiple topics during different semesters. These courses should be made into “Special Topics” courses. The Committee requested that the MATH department decide which of these four courses should be stand-alone courses or special topics courses. Essentially, a special topics course is a course that will vary by topic over different semesters, thus being repeatable. Dr. Adkins suggested that a few of these courses should be fixed courses that do not vary by topic each semester. The Department is requesting that Math 7230 and 7250 retain the topics designation. The revised proposals with the additional justification requested are attached. The Department is requesting that the proposals for Math 7230 and 7250 be switched to a single course rather than topics. The attached proposals have been changed to reflect this new format.
REQUEST FOR ADDITION OF NEW COURSE

Department: Mathematics

College: Science

Date: 5/2/2013

PROPOSED COURSE

Rubric & No.: MATH 7240

Title: Topics in Algebraic Geometry

COURSE CREDIT

Graduate Credit: X YES NO

Semester Hours of Credit: 3

If course may be repeated for credit (i.e. special topics), course may be taken for a max. of ___ credit hours.

Credit will not be given for this course and:

GRADING

Final Exam: X YES NO

Grading System: X Letter Grade ___ Pass/Fail

(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE

(Indicate hours in the appropriate course type)

Maximum enrollment per section: ___

CATALOG TEXT

(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

7240 Topics in Algebraic Geometry (3)

Prereq: Math 7211. May be repeated for credit with consent of department when topics vary for a max. of ___ credit hrs.

Topics in algebraic geometry, such as affine and projective varieties, morphisms and rational mappings, nonsingular varieties, sheaves and schemes, sheaf cohomology, algebraic curves and surfaces, elliptic curves, toric varieties, real algebraic geometry.

BUDGET IMPACT

If this course is approved, will additional staff be needed? ___ YES X NO

Will additional space, equipment, special library materials or other major expense be involved? ___ YES X NO

(If answer to either question above is ‘yes’ attach explanation.)

ATTACHMENTS

ATTACH THE FOLLOWING TO YOUR PROPOSAL:

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria

(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students.)

APPROVALS

Department Faculty Approval 4/29/2013

College Faculty Approval

College Dean’s Approval

Chair, FS C&C Committee

Academic Affairs Approval

Department Chair’s Signature (date)

Graduate Dean’s Signature (for 4000 level and above) (date)

College Contact:

Kim Kubicek

(please print name)

College Contact E-mail: kkubicek@lsu.edu
Justification for the request for addition of Math 7240: Topics in Algebraic Geometry

Algebraic geometry is one of the standard graduate courses in algebra. The Department of Mathematics has offered an algebraic geometry course regularly as a section of Math 7280 (Seminar in Commutative Algebra), a course number more appropriate for higher level seminars and less standard courses. Accordingly, we propose the addition of a dedicated course number for the department’s algebraic geometry class.

The attached sample syllabus is for a topics course focused on the theory of schemes, sheaves and sheaf cohomology. Some other possible topics include courses focused on (1) algebraic curves or (2) toric geometry.
Topics in Algebraic Geometry–Math 7240

Text: *Algebraic Geometry* by Robin Hartshorne.

Prerequisites: Math 7211 or permission of the instructor.

Course Description:

Algebraic geometry has its origin in the study of solutions to systems of polynomial equations. It is of fundamental importance in a wide range of areas of mathematics such as number theory, representation theory, and mathematical physics and also has surprising applications to such fields as statistics, mathematical biology, control theory, and robotics.

This class will provide an introduction to algebraic geometry. The course will follow this approximate outline:

1. Algebraic varieties and morphisms. (2 weeks)
2. Nonsingular varieties with emphasis on curves. (1 week)
3. Intersection multiplicity. (1 week)
4. Sheafs and schemes. (2 weeks)
5. Basic properties of schemes and morphisms, including separated, proper, and projective morphisms. (2 weeks)
6. Sheaves of modules. (2 weeks)
7. Divisors and projective morphisms. (2 weeks)
8. Sheaf cohomology and applications, including the cohomology of projective space. (2 weeks)

Grading: Grading will be based on weekly problem sets and a final exam worth 70% and 30% of the total grade respectively.

Grading scale: 90-100 A, 80-89 B, 70-79 C, 60-69 D, 0-59 F.
From: Lawrence Rouse, Chair, Courses and Curricula Committee

At their June 20, 2013 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the MATH proposals:

MATH 7410
- The Committee approved the proposal to add MATH 7410 but wanted to know if "or equivalent" within the course prerequisite list was necessary. The Department would prefer to retain the "or equivalent" within the course prerequisite.

MATH 7366
- The Committee approved the proposal to add MATH 7366 pending the submission of a revised syllabus that deletes the MATH 7311 from the prerequisites within the course description. Also, the committee wanted to know if the department wishes to add "consent of instructor" to the list of prerequisites for the course. The revised syllabus is attached. The Department does not wish to add "consent of instructor" to the prerequisite.

MATH 7220
- The Committee conditionally approved the proposal to add MATH 7220 pending the deletion of "may be repeated for credit with consent of department for a max. of 9 credit hrs." The Committee also requested that the words "topics in" be removed from the course description to note that this course is a stand-alone course not a special topics course. The revisions have been made in the attached revised proposal.

MATH 7230, 7240, 7250, and 7260
- The Committee conditionally approved the proposals to add MATH 7230, 7240, 7250, and 7260 pending a justification for each explaining why each course may have multiple topics during different semesters. These courses should be made into "Special Topics" courses. The Committee requested that the MATH department decide which of these four courses should be stand-alone courses or special topics courses. Essentially, a special topics course is a course that will vary by topic over different semesters, thus being repeatable. Dr. Adkins suggested that a few of these courses should be fixed courses that do not vary by topic each semester. The Department is requesting that Math 7250 and 7260 retain the topics designation. The revised proposals with the additional justification requested are attached. The Department is requesting that the proposals for MATH 7250 and 7260 be switched to a single course (rather than topics). The attached proposals have been changed to reflect this new format.
REQUEST FOR ADDITION OF NEW COURSE

Department: Mathematics
College: Science
Date: 5/2/2013

PROPOSED COURSE
Rubric & No.: MATH 7250
Title: Representation Theory
Short Title: R7250

Semester Hours of Credit: 3
Graduate Credit: X
Credit will not be given for this course and:

Maximum enrollment per section: 25

CATALOG TEXT (Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)
7250 Representation Theory (3)

BUDGET IMPACT
If this course is approved, will additional staff be needed? _ YES x NO
Will additional space, equipment, special library materials or other major expense be involved? _ YES x NO

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?
SYLLABUS: Including 14 week outline of the subject matter, titles of text, lab manual, and/or required readings; grading scale and criteria (For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students).

APPROVALS
Department Faculty Approval 4/29/2013
College Faculty Approval 6/4/13

Department Chair's Signature
Graduate Dean's Signature (for 4000 level and above)
College Contact:

College Contact E-mail: kkubicek@lsu.edu

Academic Affairs Approval
Justification for the request for addition of Math 7250: Representation Theory

Representation theory is one of the standard graduate courses in algebra. The Department of Mathematics has offered representation theory courses regularly as a section of Math 7290 (Seminar in Algebra and Number Theory), a course number more appropriate for higher level seminars and less standard courses. Accordingly, we propose the addition of a dedicated course number for the department’s representation theory class.
Representation Theory—Math 7250

Prerequisites: Math 7211 or permission of the instructor.

Course Description:

Representation theory is the study of the ways in which groups (or other algebraic objects) can act on vector spaces. Intuitively, group representation theory investigates ways in which an abstract group may be interpreted concretely as a group of matrices with matrix multiplication as the group operation. Representations are ubiquitous in modern mathematics. Indeed, representation theory has significant applications throughout algebra, topology, analysis, and applied mathematics. It also is of fundamental importance in physics, chemistry, and material science. For example, it appears in quantum mechanics, crystallography, or any physical problem in which one studies how symmetries of a system affect the solutions.

This course is designed to give an introduction to representation theory, with an emphasis on Lie algebras and algebraic groups. The class is designed to be suitable both for students planning to specialize in representation theory and for those who need it for applications. The course will follow this approximate outline:

1. Representation theory of finite groups over the complex numbers. Topics covered will include Schur's Lemma, complete reducibility, the group algebra, character theory, induced representations, and Frobenius reciprocity. (3 weeks)
2. Introduction to complex algebraic groups and their Lie algebras. (1 week)
3. Representations of $\mathfrak{sl}_2(\mathbb{C})$ and $\mathfrak{sl}_3(\mathbb{C})$. (1 week)
4. Basic theory of nilpotent, solvable, and semisimple Lie algebras, including Engel's Theorem, Lie's theorem, Cartan's criterion, the Killing form, Cartan subalgebras, Borel subalgebras, and root systems. (3 weeks)
5. The classification of semisimple Lie algebras. (1 week)
6. The universal enveloping algebra of a Lie algebra and the Poincaré-Birkhoff-Witt Theorem. (1 week)
7. Highest weight representations of semisimple Lie algebras, Verma modules, finite-dimensional irreducible representations. (2 weeks)
8. The Weyl character formula and the Kostant multiplicity formula. (2 weeks)

Throughout the course, we will illustrate the abstract theory with some concrete examples.

Grading: Grading will be based on weekly problem sets and a final exam worth 70% and 30% of the total grade respectively.
Grading scale: 90-100 A, 80-89 B, 70-79 C, 60-69 D, 0-59 F.
At their June 20, 2013 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the MATH proposals:

MATH 7410
- The Committee approved the proposal to add MATH 7410 but wanted to know if “or equivalent” within the course prerequisite list was necessary. The Department would prefer to retain the “or equivalent” within the course prerequisite.

MATH 7366
- The Committee approved the proposal to add MATH 7366 pending the submission of a revised syllabus that deletes the MATH 7311 from the prerequisites within the course description. Also, the committee wanted to know if the department wishes to add “consent of instructor” to the list of prerequisites for the course. The revised syllabus is attached. The Department does not wish to add “consent of instructor” to the prerequisite.

MATH 7220
- The Committee conditionally approved the proposal to add MATH 7220 pending the deletion of “may be repeated for credit with consent of department for a max. of 9 credit hrs.” The Committee also requested that the words “topics in” be removed from the course description to note that this course is a stand-alone course not a special topics course. The revisions have been made in the attached revised proposal.

MATH 7230, 7240, 7250, and 7260
- The Committee conditionally approved the proposals to add MATH 7230, 7240, 7250, and 7260 pending a justification for each explaining why each course may have multiple topics during different semesters. These courses should be made into “Special Topics” courses. The Committee requested that the MATH department decide which of these four courses should be stand-alone courses or special topics courses. Essentially, a special topics course is a course that will vary by topic over different semesters, thus being repeatable. Dr. Adkins suggested that a few of these courses should be fixed courses that do not vary by topic each semester. The Department is requesting that Math 7240 and 7260 retain the topics designation. The revised proposals with the additional justification requested are attached. The Department is requesting that the proposals for MATH 7240 and 7260 be switched to a single course (rather than topics). The attached proposals have been changed to reflect this new format.
REQUEST FOR ADDITION OF NEW COURSE

Department: Mathematics
College: Science
Date: 5/2/2013

PROPOSED COURSE

Short Title: HOMOLOGICAL ALGEBRA
Rubric & No.: MATH 7260
Title: Homological Algebra

COURSE CREDIT

Graduate Credit: X YES NO

Semester Hours of Credit: 3

(For combination course types only: Lecture Hrs. Lab/Sem/Rec Hrs.)

If course may be repeated for credit (i.e. special topics), course may be taken for a max. of ___ credit hours.

Credit will not be given for this course and:

(Indicate rubrics and course numbers)

GRADING

Final Exam: X YES NO
Grading System: X Letter Grade Pass/Fail

(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE

(Indicate hours in the appropriate course type)

__ LEC/REC __ LEC/SEM __ LEC __ LAB __ LEC/LAB __ SEM __ CLN PRACT __ RES/INO

Maximum enrollment per section: 25

(Catalog hours in the appropriate course type)

CATALOG TEXT

(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

7260 Homological Algebra (3)
Prereq: Math 7211. Modules over a ring, projective and injective modules and resolutions, abelian categories, functors and derived functors, Tor and Ext, homological dimension of rings and modules, spectral sequences, and derived categories.

BUDGET IMPACT

If this course is approved, will additional staff be needed? X YES NO
Will additional space, equipment, special library materials or other major expense be involved? X YES NO

(If answer to either question above is 'yes,' attach explanation.)

Academic Affairs Approval:

ATTACHMENTS

ATTACH THE FOLLOWING TO YOUR PROPOSAL.

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria

(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students.)

APPROVALS

Department Faculty Approval 4/29/2013

College Faculty Approval 6/1/2013

Department Chair's Signature

Graduate Dean's Signature (for 4000 level and above)

College Contact:

College Contact E-mail:

Academic Affairs Approval
Justification for the request for addition of Math 7260: Homological Algebra

Homological algebra is one of the standard graduate courses in algebra. The Department of Mathematics has offered a homological algebra course regularly as a section of Math 7280 (Seminar in Commutative Algebra) or Math 7290 (Seminar in Algebra and Number Theory), course numbers which are more appropriate for higher level seminars and less standard courses. Accordingly, we propose the addition of a dedicated course number for the department's homological algebra class.
Homological Algebra–Math 7260

Text: An Introduction to Homological Algebra by Charles Weibel.

Prerequisites: Math 7211 or permission of the instructor.

Course Description:

Homological algebra is a branch of algebra that developed in the mid-twentieth century as a way to systematize and abstract techniques from algebraic topology and module theory involving homology—a procedure in which a sequence of abelian groups or modules is associated to each object in a given category. Its influence has expanded far beyond its primarily topological origins, and it is now a fundamental tool in such far-flung branches of mathematics as representation theory, algebraic geometry, number theory, complex analysis, partial differential equations, functional analysis, and mathematical physics.

This class will provide an introduction to homological algebra. The course will follow this approximate outline:

1. Review of basic notions of category theory. (1 week)
2. Abelian categories. These categories are the natural setting for homological algebra. (1 week)
3. A brief introduction to sheaf theory. The category of sheaves of abelian groups on a topological space is an example of an abelian category which is very important in many branches of mathematics. (1 week)
4. Chain and cochain complexes. (1 week)
5. Injective and projective resolutions. (2 weeks)
6. Derived functors. (2 weeks)
7. Tor and Ext. These are derived functors for tensor product and Hom respectively. (2 weeks)
8. Spectral sequences. (2 weeks)
9. Derived categories. (2 weeks)

Throughout the course, we will illustrate the abstract theory with some concrete examples.

Grading: Grading will be based on weekly problem sets and a final exam worth 70% and 30% of the total grade respectively.

Grading scale: 90-100 A, 80-89 B, 70-79 C, 60-69 D, 0-59 F.
At their June 20, 2013 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the MATH proposals:

MATH 7410
- The Committee approved the proposal to add MATH 7410 but wanted to know if "or equivalent" within the course prerequisite list was necessary. The Department would prefer to retain the "or equivalent" within the course prerequisite.

MATH 7366
- The Committee approved the proposal to add MATH 7366 pending the submission of a revised syllabus that deletes the MATH 7311 from the prerequisites within the course description. Also, the committee wanted to know if the department wishes to add "consent of instructor" to the list of prerequisites for the course. The revised syllabus is attached. The Department does not wish to add "consent of instructor" to the prerequisite.

MATH 7220
- The Committee conditionally approved the proposal to add MATH 7220 pending the deletion of "may be repeated for credit with consent of department for a max. of 9 credit hrs." The Committee also requested that the words "topics in" be removed from the course description to note that this course is a stand-alone course not a special topics course. The revisions have been made in the attached revised proposal.

MATH 7230, 7240, 7250, and 7260
- The Committee conditionally approved the proposals to add MATH 7230, 7240, 7250, and 7260 pending a justification for each explaining why each course may have multiple topics during different semesters. These courses should be made into "Special Topics" courses. The Committee requested that the MATH department decide which of these four courses should be stand-alone courses or special topics courses. Essentially, a special topics course is a course that will vary by topic over different semesters, thus being repeatable. Dr. Adkins suggested that a few of these courses should be fixed courses that do not vary by topic each semester. The Department is requesting that Math 7230 and 7240 retain the topics designation. The revised proposals with the additional justification requested are attached. The Department is requesting that the proposals for Math 7250 and 7260 be switched to a single course (rather than topics). The attached proposals have been changed to reflect this new format.
REQUEST FOR ADDITION OF NEW COURSE

Department: Mathematics Date: 5/2/2013
College: Science

PROPOSED COURSE
Short Title: STOCHASTIC ANALYSIS
Rubric & No.: MATH 7366 Title: Stochastic Analysis

COURSE CREDIT
Graduate Credit: X YES NO
Semester Hours of Credit: 3 (For combination course types only: Lecture Hrs. Lab/Sem/Rec Hrs.)
If course may be repeated for credit (i.e. special topics), course may be taken for a max. of ___ credit hours.
Credit will not be given for this course and:

GRADING
Final Exam: X YES NO Grading System: X Letter Grade ___ Pass/Fail
(Attach justification if the proposed course will not hold a final exam during examination week.)

COURSE TYPE
(Indicate hours in the appropriate course type)

<table>
<thead>
<tr>
<th>LEC/REC</th>
<th>LEC/SEM</th>
<th>LEC</th>
<th>LAB</th>
<th>LEC/LAB</th>
<th>SEM</th>
<th>CLIN.PRACT</th>
<th>RES/IND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum enrollment per section: 25 (use integer, e.g. 25 not 20-30)

CATALOG TEXT
(Concise catalog statement exactly as you wish it to appear in the LSU General Catalog)

7366 Stochastic Analysis (3)

BUDGET IMPACT
If this course is approved, will additional staff be needed? X YES NO
Will additional space, equipment, special library materials or other major expense be involved? X YES NO
(If answer to either question above is 'yes' attach explanation.)
Academic Affairs Approval: Date:

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL

JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?

SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria
(For 4000-level, specify graduate student grading criteria if requirements differ for graduate and undergraduate students.)

APPROVALS
Department Faculty Approval: 4/29/2013 (date)
College Faculty Approval: 4/1/13 (date)
Department Chair's Signature: 6/1/13 (date)
College Dean's Signature: 6/20/13 (date)
Graduate Dean's Signature (for 4000 level and above): 6/20/13 (date)
College Contact: Kim Kubicek (Please print name)
College Contact E-mail: kubicek@lsu.edu

Academic Affairs Approval: 7/6/13 (date)
Justification for the request for addition of Math 7366: Stochastic Analysis

Stochastic Analysis is an essential topic for graduate students in probability. The Department of Mathematics has offered a stochastic analysis course regularly as a section of Math 7390 (Seminar in Analysis), a course number more appropriate for higher level seminars and less standard courses. Accordingly, we propose the addition of a dedicated course number for the department’s stochastic analysis class.
Stochastic Analysis - Math 7366

Prerequisites: Math 7360, or consent of the instructor.

Course Description: Stochastic Analysis is the study of Wiener processes, stochastic integration and stochastic differential equations. Construction of Wiener measure, and the ensuing infinite-dimensional analysis are studied as well. The syllabus for the course is given below:

1. Wiener processes (2 weeks)
2. Construction of Wiener measure (2 weeks)
3. Martingale theory (2 weeks)
4. Stochastic integration and Itô's formula (3 weeks)
5. Stochastic differential equations (3 weeks)
6. Infinite-dimensional analysis (2 weeks)

Course Work: Homeworks will be assigned periodically, and would constitute 60% of the course grade. There will be a mid-term test and a final examination, each accounting for 20% of the course grade.

Course Grade:

- $A : \geq 90\%$
- $B : \geq 80\%$
- $C : \geq 60\%$
- $D : \geq 40\%$
- $F : < 40\%$
MATH 7410
- The Committee approved the proposal to add MATH 7410 but wanted to know if "or equivalent" within the course prerequisite list was necessary. The Department would prefer to retain the "or equivalent" within the course prerequisite.

MATH 7366
- The Committee approved the proposal to add MATH 7366 pending the submission of a revised syllabus that deletes the MATH 7311 from the prerequisites within the course description. Also, the committee wanted to know if the department wishes to add "consent of instructor" to the list of prerequisites for the course. The revised syllabus is attached. The Department does not wish to add "consent of instructor" to the prerequisite.

MATH 7220
- The Committee conditionally approved the proposal to add MATH 7220 pending the deletion of "may be repeated for credit with consent of department for a max. of 9 credit hrs." The Committee also requested that the words "topics in" be removed from the course description to note that this course is a stand-alone course not a special topics course. The revisions have been made in the attached revised proposal.

MATH 7230, 7240, 7250, and 7260
- The Committee conditionally approved the proposals to add MATH 7230, 7240, 7250, and 7260 pending a justification for each explaining why each course may have multiple topics during different semesters. These courses should be made into "Special Topics" courses. The Committee requested that the MATH department decide which of these four courses should be stand-alone courses or special topics courses. Essentially, a special topics course is a course that will vary by topic over different semesters, thus being repeatable. Dr. Adkins suggested that a few of these courses should be fixed courses that do not vary by topic each semester. The Department is requesting that Math 7230 and 7240 retain the topics designation. The revised proposals with the additional justification requested are attached. The Department is requesting that the proposals for Math 7250 and 7260 be switched to a single course (rather than topics). The attached proposals have been changed to reflect this new format.
REQUEST FOR ADDITION OF NEW COURSE

Department: Mathematics
College: Science

PROPOSED COURSE
Rubric & No.: MATH 7410
Title: Graph Theory

COURSE CREDIT
Graduate Credit: YES
Semester Hours of Credit: 3
If course may be repeated for credit (i.e. special topics), course may be taken for a max. of ___ credit hours.
Credit will not be given for this course and:

GRADING
Final Exam: YES
Grading System: Letter Grade

CATALOG TEXT
7410 Graph Theory (3) Prereq.: MATH 2085 and MATH 4039; or equivalent. Matchings and coverings, connectivity, planar graphs, colorings, flows, Hamilton graphs, Ramsey theory, topological graph theory, graph minors.

BUDGET IMPACT
If this course is approved, will additional staff be needed? YES
Will additional space, equipment, special library materials or other major expense be involved? YES

ATTACHMENTS
ATTACH THE FOLLOWING TO YOUR PROPOSAL:
JUSTIFICATION: Justification must explain why this course is needed and how it fits into the curricula. Will the course duplicate other courses?
SYLLABUS: Including 14 week outline of the subject matter; titles of text, lab manual, and/or required readings; grading scale and criteria

APPROVALS
Department Faculty Approval 4/29/2013
College Faculty Approval 6/4/13

College Contact: Kim Kubicek
College Contact E-mail: KKubicek@lsu.edu
Justification

This, in effect, is a request not to create a new course, but rather to assign a new number, namely MATH 7410, and the title of “Graph Theory” to a course that has been taught with the syllabus provided below for about 15 years as MATH 7400. A previous request to change the title of the course and its catalog description has been denied, and creating a new course has been suggested instead.

Graph theory is a major area of mathematics, which serves as a research focus of four of the department’s professors and about a dozen of Ph.D. students. It is very important to the department’s graduate program that graph theory be taught regularly as a 7000-level course.
The main theme of this course will be graph theory. We will discuss a wide range of topics, including spanning trees, Eulerian trails, matching theory, connectivity, Hamiltonian cycles, coloring, planarity, integer flows, surface embeddings, and graph minors. The prerequisites for the course are very modest—all graduate students should be able to follow the lectures. There are many books on graph theory. I recommend for the course Graph Theory by Reinhard Diestel, Fourth Edition, Springer, 2010, which is available both as a paperback and a free preview. Another good book on the subject is Introduction to Graph Theory by Douglas B. West, Prentice Hall, 1996. Having these books, especially the first one listed, will be very helpful, but not absolutely necessary. I plan to present the lectures with my own notes, which will be available for download, both as slides, and as a handout, and which should make good study material.

The homework for the course consists of about 25 problems, given out regularly in sets of two or three. The problems are difficult, and only exceptional students are expected to be able to solve them all without my assistance. All other students are expected and encouraged to try solving the problems on their own, but not to hesitate to seek my assistance if unable to complete the assignment. Each student is expected to spend anywhere from 3 to 10 hours per week working on the problems and to submit a well-written solution to each problem, which typically would extend to 2 or 3 pages per problem.

The grade for the course will be based 60% on homework and 40% on two exams (midterm and final). Decisions in borderline cases will be made on the basis of class participation.

Grading scale: 90-100 A, 80-89 B, 70-79 C, 60-69 D, 0-59 F.

Week 1: notation and terminology; graph isomorphism; automorphism group; subgraphs and induced subgraphs; reconstruction conjectures; Hand-Shaking Lemma.

Week 2: degree sequences; graphic sequences; Havel-Hakimi Theorem; trees and their characterization; Kruskal's Theorem on minimum-cost spanning trees.

Week 3: enumerating labeled trees; Cayley's Formula; counting spanning trees; Graceful Labeling Conjecture; Ringel's Tree Decomposition Conjecture, Posa's Theorem.

Week 4: characterization of bipartite graphs; matchings; Hall's Marriage Theorem; matchings in regular graphs.

Week 5: vertex covers; Koenig-Egervary Theorem; Tutte's 1-Factor Theorem.

Week 6: Petersen's Theorem on matchings in cubic graphs; Euler tours; characterization of Eulerian graphs; vertex connectivity; edge connectivity.

Week 7: Tutte connectivity and its relation to other connectivity parameters; Mader's Theorem on complete subgraphs; block-tree; Whitney's characterization of 2-connected graphs.

Week 8: Whitney's ear-decomposition of 2-connected graphs; closed-ear-decomposition of edge-2-connected graphs; Menger's Theorem; line graphs; Tutte's Wheel Theorem; Tutte's decomposition of 2-connected graphs into 3-blocks.

Week 9: embedding graphs in the plane; dual graphs; Euler's Formula, Platonic solids; Kuratowski's Theorem.

Week 10: vertex coloring; Brooks' Theorem; 5-Color Theorem; discharging method; outline of the proof of the 4-Color Theorem; chromatic polynomial; perfect graphs.

Week 11: edge coloring; Vizing's Theorem; flows and circulations; Tait's Theorem; flow-coloring duality; Tutte's flow conjectures; miscellany of coloring results.

Week 12: Hamilton cycles; Hamiltonian graphs; Dirac's Theorem; Grinberg's Theorem; Tutte's Graph; Tutte's Theorem on Hamilton cycles in planar graphs.

Week 13: cellular embeddings of graphs on surfaces; facial walks; Euler characteristic; rotation systems; embedding schemes; genus of a graph; Heawood's Formula.

Week 14: well-quasi-ordering; Higman's Theorem; minimal bad sequences; Kruskal's Theorem on well-quasi-ordering of trees; tree-decomposition; tree-width; grids; Graph-Minors Theorem for planar graphs; outline of a proof of the general version of Graph Minors Theorem.

Week 15: extremal graphs; Turan's Theorem; Ramsey's Theorem; review.
Anna M Castrillo

From: William Adkins [adkins.lsumath@gmail.com]
Sent: Monday, June 10, 2013 4:48 PM
To: Anna M Castrillo
Cc: Kimberly G Kubicek; delzell@math.lsu.edu
Subject: RE: MATH proposals

Anna,

I will be happy to attend the meeting if you think there is some ambiguity about this package of proposals that I can possibly clear up. I thought that it was clear that what we were proposing is to create dedicated courses for classes that had been taught regularly under existing seminar numbers. For example, here is our description of the graduate algebra courses that we expect students to take:

Algebraic Number Theory, Algebraic Geometry and Representation Theory

Key Common Core Courses: MATH 7210 (Algebra I), MATH 7211 (Algebra II) Key Breadth Courses: MATH 7280 (Topics in Algebra)

Key Advanced Courses Offered Annually:
- MATH 7280 (Topics in Algebra)
- MATH 7250 (Topics in Commutative Algebra)
- MATH 7251 (Topics in Algebraic Number Theory)

Key Advanced Courses Offered at least on Alternate Years:
- MATH 7390 (Topics in Algebraic K-Theory)
- MATH 7391 (Topics in Algebraic Topology)

Key Advanced Courses Offered at least Every Third Year:
- MATH 7590 (Topics in Algebraic Geometry)
- MATH 7591 (Topics in Algebraic Topology)
- MATH 7592 (Topics in Algebraic Geometry and Topology)

See https://www.math.lsu.edu/grad/gradcurricula#algebra. The last five courses listed under the seminar rubrics 7280 and 7290 are exactly the five proposed algebra courses. Since these courses are offered on a regular basis, we thought it was more appropriate that these standard courses have their own numbers.

My teaching schedule is 1:20-2:20, so I would have to miss the initial part of the meeting. Would it be possible to schedule the Math proposals for later in the agenda if you think it would be beneficial for me to attend?

On the second issue that you raised, we decided not to drop Math 7400 at this time. Since Math 7400 and the proposed 7410 have sufficiently different descriptions that it was deemed that a change of description was not appropriate, we decided that we would leave Math 7400 for now.

Sincerely,

William A. Adkins
Director of Graduate Studies
Department of Mathematics
Louisiana State University
Baton Rouge, LA 70803-4918
Good afternoon,

Anna in the Office of the University Registrar responded regarding the recent Math proposals (see below).

Thanks,

Kim Kubicek
Academic Counselor
College of Science
Louisiana State University
351 Hatcher Hall
(225) 578-4200
kkubicek@lsu.edu

From: Anna M Castrillo
Sent: Monday, June 10, 2013 11:42 AM
To: Kimberly G Kubicek
Subject: MATH proposals

Kim,

I have just reviewed the MATH proposals. I can only say that I am not sure whether the committee will grant additions when they have not been taught as special topics courses before. However, I see that all of them were taught as sections of already established courses. We shall see what the committee says. On that point, I would suggest someone from MATH coming as a guest representative to answer any questions/concerns the committee may have.

Also, will MATH 7400 be dropped? If so, we will need a drop form.

I would also suggest someone from PHYS coming too especially since those proposals are complicated.

The meeting will be held June 18th from 1:45-3:45 in Room 129 Himes Hall.

Sincerely,

Anna Castrillo, M.A.
Coordinator
Office of the University Registrar
Louisiana State University
112 Thomas Boyd Hall
Phone: (225)578-4111
Fax: (225)578-5991
At their December 4th, 2012 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the MATH proposals:

ACTUARIAL SCIENCE CONCENTRATION
- The Committee conditionally approved the proposal to change the Actuarial Science concentration pending clarification on whether or not this course is a required course in the concentration or just an option as mentioned in the justification. If the course is just an option, it needs to be taken out of the required courses section listed in the concentration and made clear that it is indeed an option.

MATH 3903
- The Committee conditionally approved the proposal to change MATH 3903: Methods of Problem Solving pending an explanation on why the reference to the Putnam Competition is needed in the course description. The Committee believed this statement to be better situated in the course syllabus; however, similar wording is acceptable for the course description as follows, “Logical problems as seen in the Putnam competition”.

MATH 6301, 6302, 6303
- The Committee returned the proposals to change MATH 6301 and 6302 and add MATH 6303. The Committee would like to see a straightforward explanation of what group activities will be, not just a citation from Slavin. The Committee would like to see examples of what group activities will include.

MATH 7400
- The Committee returned the proposal to change MATH 7400. The Committee sees this as a new course; therefore, MATH 7400 must be dropped and a new course with a new course number must be created.

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastrl@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.
From: Lawrence Rouse, Chair, Courses and Curricula Committee

At their June 20, 2013 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the MATH proposals:

MATH 7410
- The Committee approved the proposal to add MATH 7410 but wanted to know if "or equivalent" within the course prerequisite list was necessary. The Department would prefer to retain the "or equivalent" within the course prerequisite.

MATH 7366
- The Committee approved the proposal to add MATH 7366 pending the submission of a revised syllabus that deletes the MATH 7311 from the prerequisites within the course description. Also, the committee wanted to know if the department wishes to add "consent of instructor" to the list of prerequisites for the course. The revised syllabus is attached. The Department does not wish to add "consent of instructor" to the prerequisite.

MATH 7220
- The Committee conditionally approved the proposal to add MATH 7220 pending the deletion of "may be repeated for credit with consent of department for a max. of 9 credit hrs." The Committee also requested that the words "topics in" be removed from the course description to note that this course is a stand-alone course not a special topics course. The revisions have been made in the attached revised proposal.

MATH 7230, 7240, 7250, and 7260
- The Committee conditionally approved the proposals to add MATH 7230, 7240, 7250, and 7260 pending a justification for each explaining why each course may have multiple topics during different semesters. These courses should be made into "Special Topics" courses. The Committee requested that the MATH department decide which of these four courses should be stand-alone courses or special topics courses. Essentially, a special topics course is a course that will vary by topic over different semesters, thus being repeatable. Dr. Adkins suggested that a few of these courses should be fixed courses that do not vary by topic each semester. The Department is requesting that Math 7230 and 7240 retain the topics designation. The revised proposals with the additional justification requested are attached. The Department is requesting that the proposals for Math 7230 and 7260 be switched to a single course rather than topics. The attached proposals have been changed to reflect this new format.
Request for CHANGING an Existing Course

Department: Computer Science & Eng.
Course Rubric and #: CSC 1250
College: Engineering
Date: 3/19/2013

Present Course Description

Title: Introduction to Programming

Semester Hours of Credit: 3

Contact Hours Per Week: (Indicate hours in appropriate course type.)

Total Weekly Contact Hours: 3

Grading System: Letter Grade __X__ Pass/Fail ___

Course Description:
"Include course number, title, etc., exactly as it will appear in the General Catalog."

Proposed Course Description

Title: Introduction to Programming

Semester Hours of Credit: 3

Contact Hours Per Week: (Indicate hours in appropriate course type.)

Total Weekly Contact Hours: 3

Grading System: Letter Grade __X__ Pass/Fail ___

Course Description:
"Include course number, title, etc., exactly as it will appear in the General Catalog."

THESE QUESTIONS MUST BE ANSWERED COMPLETELY AND ACCURATELY OR PROPOSAL WILL BE RETURNED.

Has this change been discussed with and approved by all departments/colleges affected? Yes () No (X) N/A ()

Is this course included in any curricula, concentrations, or minors? Yes () No (X) If yes, please list on a separate sheet.

Is this course a prerequisite or corequisite for other courses? Yes () No (X) If yes, list courses; use separate sheet.

Is this course on the General Education list? Yes () No (X)

JUSTIFICATION/EXPLANATION: Use separate sheet.

Note: IF COURSE IS OR WILL BE CROSS-LISTED, SEPARATE FORMS MUST BE SUBMITTED BY EACH DEPARTMENT.

APPROVALS:

Department Faculty Approval Date: 25 May 2013
Department Chair’s Signature: 3-26-2013

Graduate Dean’s Signature: (Date)
College Contact: ____________________

College Contact E-mail: ____________________

College Faculty Approval Date: 4/24/13
College Dean’s Signature: (Date)
Chair, FS C & C Committee: 3/11/13

Academic Affairs Approval: (Date)
JUSTIFICATION:
CSC 1250 aims to introduce the fundamentals of problem solving and the basic concepts of computer programming and its applications to a broad section of the beginning freshman students. The target student for this course is one who has not had any previous experience in programming and may not be intending to pursue a degree program in the sciences or engineering. A background in MATH 1022 or 1023 or 1431 or 1550 is not required as such to understand the concepts introduced in this course or to complete the programming projects and other exercises in this course.

The goal of this course is for the student to gain an appreciation for the rudiments of designing a logical step-by-step solution, thinking algorithmically, and implementing such a solution in a computer program. While a student may not be interested in a technology-centric curriculum, all agree that an understanding of computers and how they work to solve our day-to-day problems is essential to the well-educated person.

Additionally our hope is that some students who might not otherwise have considered an engineering, computer science, or computer technology career might be enticed toward those fields through this course. Currently there is a critical shortage in the workforce in those areas.

CSC 1250 was originally part of a 3-course introductory sequence in computer science (CSC 1250, 1251, 2290). The 3-course sequence is no longer offered; CSC 1251 and 2290 have previously been deleted from the catalog. The department now offers only 2-course sequences (CSC 1350/1351 Java; 1253/1254 C++). CSC 1250 has remained in the catalog to facilitate transfer credits for students who have earned credits in an introduction to programming, but whose credits lack the rigor of content in the courses CSC 1253 or 1350. The prerequisites (credit or registration) MATH 1022 or 1023 or 1431 or 1550 were included partially to ensure that the students enrolled in CSC-1250 were making progress in preparation for more advanced math courses such as MATH 1550 which was required in curricula requiring CSC 1250.

CSC 1248 is being omitted from the list for which both course credits cannot be received because CSC 1248 is now obsolete.
SYLLABUS FOR CSC-1250

This course is designed to introduce programming to first year students who may not have any previous programming background. The programming language to be used can be C or more advanced languages like C++ or Java. The robotics-projects need not involve actual physical robots and can be done using a simulator; (Optionally, students may opt to purchase their own robots at their own costs.)

Topics:
Wk-#01 Intr. to Computer Hardware and Software, algorithm, program, compilation, and execution.
Wk-#02 Basic data-types and data-structures, syntax of statements, and programming constructs.
Wk-#03 Arithmetic, boolean, and input/output operations.
Program #1: Basic input and output operations ("cin" and "cout") on integer, double/float, and string data; understanding error-reports when input-data type does not match type of the variable.
Wk-#04 If-statements, if-else statements, nested if-statements; their application in classification of triangles by lengths of sides and angles.
Wk-#05 Flowcharts of if-statements; techniques for improving program logic and efficiency (part-I).
Program #2: Classification of triangles from input of lengths of its sides and computing area of the triangle using appropriate formulas for the different triangle-types.
Wk-#06 For-loop, while-loops, and do-while loop; their flowcharts and the notion of control variable; applications to find min, max, average, variance of a collection of input numbers.
Techniques for improving program logic and efficiency (part-II).
Program #3: Compute median of several input integers.
Wk-#07 Array data-structure and sorting algorithms (selection sort and insertion sort).
Wk-#08 Empirical measurement of program efficiency and application to comparing sorting methods.
Program #4: Implementation of selection sorting algorithm and counting number of comparisons and data movements.
Wk-#09 Introduction to functions and recursions; application to computation of the minimum and of the second minimum, application to sorting by recursion.
Program #5: Use recursion to compute max and use this together with recursion to selection-sort an input-array of integers.
Wk-#10 File inputs and outputs, random numbers, and permutation generation.
Wk-#11 Basic components of a robot, their functions, basic algorithms for robot’s motion control.
Program #6: Make the robot move in a line, move in a circle, and make a turn by a right angle by controlling differential power supplies to the motors on the left and those on the right.
Wk-#12 Define final project and create work-schedule/plan.
Program #7: Make the robot approach an object and stop near it, with gradual reduction in speed.
Program #8: Make the robot increase its speed by increasing power supplies to motor and find the relationship between power-supply, the acceleration, and distance moved in a given time.
Wk-#13 Program #9: Start robot-project and give a preliminary demo (content will vary according to the choice of final project).
Wk-#14 Program #10: Complete robot-project and give the final demo (content will vary according to the choice of final project).

Tests, Programming work, Homeworks, and Examinations:

<table>
<thead>
<tr>
<th>Homeworks</th>
<th>15%</th>
<th>Assigned regularly (due once a week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Quizes</td>
<td>15%</td>
<td>At the start of classes (unannounced and no make-ups)</td>
</tr>
</tbody>
</table>
Class Test#1 20% Last class period of Week 6
Class Test#2 20% Last class period of Week 10
Programs 15% 10 programs throughout the semester of increasing complexity.
Robot Project 15% Final demonstration on last day of classes

Grading: A (85%-100%), B(75%-84%), C(65%-74%), D(55%-64%), F(0%-54%)

Collaboration: All work submitted for grading must represent your own work. In regard to academic misconduct for copying or other misrepresentation of submitted work, it is assumed that you have read the LSU Code of Student Conduct.

Attendance: You are responsible for all information presented in the class (written and oral). It is your responsibility to obtain the class notes and assignments from a willing classmate if you miss classes.

Return of Graded Materials: Homeworks, Tests, and other graded materials returned to students will be destroyed after a week of the date of distribution, and will not be available thereafter.

Hi, CSC 1248 is obsolete.
CSC 1248 is listed on all of our intro courses... work to do this summer.
Thanks for the reminder.
Coretta

On Fri, 26 Apr 2013 18:50:55 +0000, Anna M Castrillo wrote
> Coretta,
> > I just received a proposal to change CSC 1250. The proposal is doing away with the prerequisites listed in the current catalog
> description. Restricted credit for CSC 1248 is also being taken out of the description because “CSC 1248 is now obsolete”. However, I
> have not received a proposal to delete CSC 1248. Will this be done in the near future? Or is the justification incorrect in saying that
> the course in obsolete.
> >
> > Sincerely,
> >
> > Anna Castrillo, M.A.
> > Coordinator
> > Office of the University Registrar
> > Louisiana State University
> > 112 Thomas Boyd Hall
> > Phone: (225)578-4111
> > Fax: (225)578-5991
> >
> >

Coretta Douglas, Ph.D. Computer Science
Undergraduate/Instructional Coordinator and Instructor
School of Electrical Engineering and Computer Science
** Computer Science and Engineering **
Patrick Taylor #3118
Hi Anna,

See email reply below from the Dept. of Mathematics Dept. acknowledging the dropping of MATH requirements for the catalog description of CSC 1250.

Incomplete paperwork is in your office, pending approval now on submission of the updated syllabus from Dr. Kundu.

Thank you for your patience,

Coretta

---------- Forwarded Message ----------

From: "Charles N. Delzell" <delzell@math.lsu.edu>
To: Coretta Douglas <douglas@csc.lsu.edu>
Sent: Tue, 7 May 2013 23:02:45 -0500 (CDT)
Subject: CSC_E: Change to Prereqs CSC 1250 Reply Requested.

Dear Dr. Douglas,

Math has been informed of your proposed change to CSC 1250.

Sincerely,

Charles Delzell
Associate Chair for Instruction
Department of Math

Date: Fri, 3 May 2013 13:16 -0500
From: Coretta Douglas <douglas@csc.lsu.edu>
To: delzell@math.lsu.edu
Subj: CSC_E: Change to Prereqs CSC 1250 Reply Requested
Parts/Attachments: 60 KB Application

HL Professor Charles Delzell (Mathematics), The Computer Science and Engineering Division has proposed changes to CSC 1250 that drop the previous mathematics requirements:
Prereq.: credit or registration in MATH 1022 or 1023 or 1431 or 1550

See the attached curriculum change form for CSC 1250.

The course content is being revamped to provide an introduction to computing to a broader/diverse audience. We do not anticipate that the change will impact enrollment in your mathematics classes significantly.

Please reply to this email with an appropriate response that you have been informed of the change to CSC 1250.

Regards,

Coretta
From: Lawrence Rouse, Chair, Courses and Curricula Committee

At their May 7, 2013 meeting, the Faculty Senate Courses and Curriculum Committee took the following action regarding the CSC 1250 proposal:

CSC 1250

- The Committee conditionally approved the proposal to change CSC 1250 pending the submission of a syllabus for the course. Because the course was once part of a three course sequence, has the syllabus changed to reflect this? Who is the course specifically designed for as there is no mention of a specific computer language? Or is the course designed to adapt to various new languages? This must be stated in the justification.

Please submit the requested documentation to Anna Castrillo in the Office of the University Registrar at 112 Thomas Boyd Hall or by email at acastrl@lsu.edu.

If you have any questions regarding the request, please feel free to contact me at lrouse@lsu.edu.