Historical Diversity and Molecular Diagnosis of Bacterial Pathogens on Tomato in Pennsylvania

Ekaterina (Katya) Nikolaeva

Pennsylvania Department of Agriculture
Bureau of Plant Industry
Division of Plant Health
PDA historical collection of bacterial strains from tomato.

266 strains from more than 5,000 clinical tomato samples.
Bacterial speck
(P. syringae pv. tomato)
38 strains (1987 – 2015)

• Positive by specific PCR
 (Bereswill et al., 1994; Zaccardelli, 2005)

“Pith necrosis”
(Pseudomonas spp.)
Bacterial canker on tomato in PA

Clavibacter michiganensis
subs. *michiganensis*

Positive by specific real-time PCR (Luo et al., 2008)
Bacterial Spot Xanthomonads (BSX) on tomato in PA

X. perforans (100%, XV938)
1994-2012, 90 strains

X. gardneri (99-100%, XCGA2)
1995-2015, 32 strains

X. vesicatoria (100%, XV1111)
1996, 1 strain

X. euvesicatoria (100%, XV155)
not found on tomato but present on pepper (53 strains, 1987-2015)

Based on sequencing of 16S rRNA and BOX PCR.
Bacterial Spot Xanthomonads (BSX) on pepper and tomato in PA.

X. euvesicatoria X. vesicatoria X. perforans X. gardneri
Box PCR (rep-PCR) with PA BSX strains

(Versalovic et al., 1991).

Representatives of PA BSX strains: lanes 2 -10 - *X. gardneri*; lanes 11-17, 19, 21, 22 - *X. perforans*; lanes 20 and 23 *X. euvesicatoria*; lane 24 - *X. vesicatoria*; non-BSX strains: lanes 25-27 *X. vitians*; lane 28 and 29 – *X. campestris* pv. *campestris*
Specificity of conventional PCR primers to PA BSX strains.

| Primers (target)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>X. gardneri</td>
</tr>
<tr>
<td>X. perforans</td>
</tr>
<tr>
<td>X. euvesicatoria</td>
</tr>
<tr>
<td>X. vesicatoria</td>
</tr>
<tr>
<td>Non-BSX</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>RST65/RST69 (HrpB gene, vesicatoria group)</td>
</tr>
<tr>
<td>1/28(^a)</td>
</tr>
<tr>
<td>BSX1/2 (KK1750 sequence, vesicatoria group)</td>
</tr>
<tr>
<td>18/23</td>
</tr>
<tr>
<td>XCVF/XCVR (Hrs protein, X. euvesicatoria)</td>
</tr>
<tr>
<td>0/28</td>
</tr>
<tr>
<td>Xeu2.4/Xeu2.5 (Rep PCR fragment, X. euvesicatoria)</td>
</tr>
<tr>
<td>0/28</td>
</tr>
<tr>
<td>Bs-XeF/ Bs-XeR (AFLP product, X. euvesicatoria)</td>
</tr>
<tr>
<td>0/28</td>
</tr>
<tr>
<td>Bs-XvF/ Bs-XvR (AFLP product, X. vesicatoria)</td>
</tr>
<tr>
<td>0/28</td>
</tr>
<tr>
<td>Bs-XgF/ Bs-XgR (AFLP product, X. gardneri)</td>
</tr>
<tr>
<td>27/28</td>
</tr>
<tr>
<td>Bs-XpF/ Bs-XpR (AFLP product, X. perforans)</td>
</tr>
<tr>
<td>0(2)/28</td>
</tr>
</tbody>
</table>

\(^a\) 133 PDA BSX strains isolated from tomato and pepper were tested with published PCR primer pairs specific for BSX (Obradovic et al., 2004; Cuppels et al., 2006; Park et al., 2009; Moretti et al., 2009; Koenraadt et al., 2009). Results are based on three replications. Number of positive samples/Total tested samples.
Specific Multiplex real-time PCR for detection of *X. gardneri* from plant samples.

Two primer and probe sets:

1) Specific for *X. gardneri*
 Primers: Xg263F/Xg438R
 Probe: Xg360P
 Target: *arvBs1* effector gene

2) Specific for plant DNA (internal control)
 Primers: COX-F/COX-R
 Probe: COX-P
 Target: COX gene (Weller et al., 2000)
Multiplex real-time PCR for detection of *X. gardneri* from plant samples. Total DNA extracted with Qiagen kit.

Simplex real-time PCR for detection of *X. gardneri* from bacterial cultures without DNA extraction.

Cepheid real-time PCR machine
Time: >1 h
Detection of *X. gardneri* in tomato tissue samples.

<table>
<thead>
<tr>
<th>Bacterial CFU</th>
<th>Tomato/ X. gardneri</th>
<th>Tomato/ X. perforans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xg, Ct<sup>a</sup></td>
<td>Cox, Ct<sup>a</sup></td>
</tr>
<tr>
<td>10<sup>7</sup></td>
<td>16.95<sup>b</sup> ± 0.43</td>
<td>20.3 ± 1.30</td>
</tr>
<tr>
<td>10<sup>6</sup></td>
<td>20.21 ± 0.87</td>
<td>20.47 ± 0.08</td>
</tr>
<tr>
<td>10<sup>5</sup></td>
<td>23.38 ± 1.12</td>
<td>21.53 ± 0.23</td>
</tr>
<tr>
<td>10<sup>4</sup></td>
<td>27.45 ± 1.23</td>
<td>21.71 ± 1.08</td>
</tr>
<tr>
<td>10<sup>3</sup></td>
<td>34.21 ± 1.87</td>
<td>21.01 ± 1.70</td>
</tr>
<tr>
<td>10<sup>2</sup></td>
<td>>40</td>
<td>22.65 ± 0.46</td>
</tr>
<tr>
<td>10<sup>1</sup></td>
<td>>40</td>
<td>23.12 ± 0.58</td>
</tr>
<tr>
<td>10<sup>0</sup></td>
<td>>40</td>
<td>21.80 ± 0.07</td>
</tr>
<tr>
<td>Control<sup>d</sup></td>
<td>>40</td>
<td>22.47 ± 0.29</td>
</tr>
</tbody>
</table>

100 mg healthy tissues of tomato were mixed with 0.1 ml bacterial suspension of *X. gardneri* strain Rf-1. DNAs from plant/bacterial mixtures were extracted using Qiagen kit. ^b The Ct values ^c No fluorescence was detected after 40 cycles of PCR amplification. ^d Healthy tomato tissues.
Effectiveness of real-time PCR for detection of *X. gardneri* from PDA clinical samples

<table>
<thead>
<tr>
<th>PDA Clinical #</th>
<th>Host</th>
<th>Plant parts</th>
<th>Purified DNA<sup>a</sup></th>
<th>Culture</th>
<th>Identification<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-99-99-0054</td>
<td>Tomato</td>
<td>Leaves</td>
<td>19.23 20.39</td>
<td>Yes</td>
<td>X. gardneri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stems</td>
<td>25.94 20.84</td>
<td>Yes</td>
<td>X. gardneri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fruits</td>
<td>18.35 21.5</td>
<td>Yes</td>
<td>X. gardneri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flowers</td>
<td>21.48 19.62</td>
<td>Yes</td>
<td>X. gardneri</td>
</tr>
<tr>
<td>2011-02-35-0028</td>
<td>Tomato</td>
<td>Leaves</td>
<td>26.18 22.68</td>
<td>Yes</td>
<td>X. gardneri</td>
</tr>
<tr>
<td>2011-99-99-0063</td>
<td>Tomato</td>
<td>Leaves</td>
<td>21.26 20.77</td>
<td>Yes</td>
<td>X. gardneri</td>
</tr>
<tr>
<td>2012-99-99-0094</td>
<td>Tomato</td>
<td>Leaves</td>
<td>24.73 27.52</td>
<td>Yes</td>
<td>X. gardneri</td>
</tr>
<tr>
<td>2012-07-41-0035</td>
<td>Tomato</td>
<td>Leaves</td>
<td>17.06 20.93</td>
<td>Yes</td>
<td>X. gardneri</td>
</tr>
<tr>
<td>2015-99-99-0107</td>
<td>Tomato</td>
<td>Fruits</td>
<td>23.56 22.04</td>
<td>Yes</td>
<td>X. gardneri</td>
</tr>
</tbody>
</table>

^a Samples expressing Bacterial Spot symptoms (PDA: Harrisburg, PA). DNA from plant tissues was extracted and purified using Qiagen kit.

^b Identification based on culture characteristics and conventional and/or BOX PCR.
Effectiveness of real-time PCR for detection of *X. gardneri* from PDA clinical samples

<table>
<thead>
<tr>
<th>PDA Clinical</th>
<th>Host</th>
<th>Plant parts</th>
<th>Purified DNA<sup>a</sup></th>
<th>Culture</th>
<th>Identification<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-99-99-0113</td>
<td>Tomato</td>
<td>Leaves</td>
<td>>40.00<sup>c</sup></td>
<td>21.56</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stem</td>
<td>>40.00</td>
<td>22.58</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fruits</td>
<td>>40.00</td>
<td>20.99</td>
<td>Yes</td>
</tr>
<tr>
<td>2012-99-99-0108</td>
<td>Tomato</td>
<td>Leaves</td>
<td>>40.00</td>
<td>21.83</td>
<td>Yes</td>
</tr>
<tr>
<td>2013-07-31-0067</td>
<td>Pepper</td>
<td>Leaves</td>
<td>>40.00</td>
<td>21.18</td>
<td>Yes</td>
</tr>
<tr>
<td>2012-03-13-0029</td>
<td>Pepper</td>
<td>Leaves</td>
<td>>40.00</td>
<td>21.44</td>
<td>Yes</td>
</tr>
<tr>
<td>2012-99-99-0089</td>
<td>Tomato</td>
<td>Leaves</td>
<td>>40.00</td>
<td>19.87</td>
<td>Yes</td>
</tr>
<tr>
<td>2012-99-99-0109</td>
<td>Tomato</td>
<td>Leaves</td>
<td>>40.00</td>
<td>20.72</td>
<td>Yes</td>
</tr>
</tbody>
</table>

^a Samples expressing Bacterial Spot symptoms (PDA: Harrisburg, PA). DNA from plant tissues was extracted and purified using Qiagen kit.

^b Identification based on culture characteristics and BOX PCR.

^c No fluorescence was detected after 40 cycles of PCR amplification.
Multiplex real-time PCR for detection of *X. gardneri*. Conclusions:

- Xg263F/Xg438R real-time PCR is fast and specific for *X. gardneri* detection.

- Sensitivity of detection of *X. gardneri*
 - 30 fg of target DNA from extracted DNA;
 - 4 CFU from bacterial culture without DNA extraction;
 - 10^3 CFU per 100 mg of plant samples.
PDA exotic disease survey on Solanaceous (Farm Bill 2015)

Bacterial wilt
(Ralstonia solanacearum)

Phytoplasma diseases

Photo Source: Phil Hamm, Oregon State University
Exotic Phytoplasmas
(not present in US):

• Australian Grapevine Yellows (Ca. Phytoplasma australiense)
• Bois noir/Stolbur Phytoplasma (Ca. Phytoplasma solani)

General Phytoplasmas:

• Tomato Big Bud Disease
 (found in CA, AR, NY) Granett, 1974; Shaw et al., 1993; Dale et al., 1975
• “Brote Grande” on pepper (found in NM, AR) Randall et al., 2009
• American Potato Purple Top Wilt
 (found in TX, NE) Lee et al., 2006;
• Potato Aster Yellows, Potato Purple Top Wilt
 (found in CA, AK, OR, WA, ID) Lee et al., 2004; Lee et al., 2006
Phytoplasma symptoms on Tomato:

- Witches' brooms
- Enlarged buds form like a cyst
- Leaves become yellow-green or purplish and roll along their margins.
- Flower distortion.
- Fruit development is arrested following infection.

Persley D. & Cooke T. AU

www.apsnet.org
Phytoplasma

- Very small bacteria.
- 37 species described. All of them plant pathogens.
- Cause diseases in hundreds of plants.
- Reside inside plant phloem.
- Do not have cell walls.
- Symptoms can be unevenly distributed on the plants.
- Insect-transmitted (mainly by Leafhoppers) or seed born.
- Cannot be cultured in a lab.
- Identification can be done only at USDA approved Lab!
PDA Phytoplasma 2015 survey on Solanaceous

Diagnostics:

- Visual symptoms
- Molecular:
 - PDA Lab – USDA approved for Phytoplasma detection
 - Modified Phytoplasma-USDA approved specific real-time PCR
 - COX primers/probe as internal control (Weller et al., 2000)

Our Results:

>100 symptomatic samples

- Tomato – 13 PA counties
- Potato – 6 PA counties
- Pepper – 4 PA counties

No Phytoplasma positive found.
Bacterial wilt survey
(*Ralstonia solanacearum*)

- Affects potato, tomato, pepper, and eggplant.
- Symptoms: wilting, leaf chlorosis (yellowing), necrosis (browning) of vascular tissue, stunting, vascular rings, and rotting of tubers.
- *R. solanacearum* bv2 is on USDA PPQ Select Agent list!
PDA Ralstonia solanacearum survey (2015)

Diagnostics:

- Visual symptoms
- ImmunoStrips (Agdia, Inc.) - species level
 USDA work instruction

Our Results:

35 symptomatic samples

- Tomato – 7 PA counties
- Potato – 4 PA counties

- No *Ralstonia* positive found.
Contributors:

- **Ekaterina (Katya) Nikolaeva**, PhD
- Seong Hwan Kim, PhD
- Ruth Welliver, PhD
- Tracey Olson
- Tucker Piergallini
- Seogchan Kang, PhD

1- Pennsylvania Department of Agriculture, Harrisburg, PA
2- Department of Plant Pathology & Environmental Microbiology, Penn State University, University Park, PA

Acknowledgments:

- Specialty Crop Grants from PDA (ME442316 and ME445580)
- Farm Bill 2015