Investigation of Performance Scaling in Small Internal Combustion Engines

Shyam Menon and Christopher Cadou
University of Maryland
Department of Aerospace Engineering
Power Output Follows Power Law

Why deviation at small scales?

Manufacturer's Data

- OS61
- OS46
- AP Yellowjacket
- AP Hornet
- AP Wasp
- Norvell BigMig
- Cox BabeBee
- Cox Tee Dee
- PAW 0.15
- PAW 0.061

Engine Mass (kg)

Power (W)
Simple Scaling Explanation

\[q_{\text{loss}} \sim N u l (T_f - T_w) \]

\[Nu = 3.7 \]

Power (W)

- **Fuel power**
- **Heat loss**
Simple Scaling Explanation

\[q_{\text{loss}} \approx N u l (T_r - T_w) \]

\[N u = 3.7 \]

![Diagram showing power and power density scaling](image)
Interest/Motivation

- **Size limits of power systems**
 - How small can *practical* power systems be built?
 - What are the limiting factors?
 - Technology
 - Physics

- **Capitalize on existing technology**
 - Applications
 - UAVs
 - Micro-rockets
 - Understand what we can do *today*
Approach

- Detailed performance measurements for four engines of different sizes
 - Torque
 - Speed
 - Fuel flow rate
 - Air flow rate
 - Cylinder head T
 - Exhaust gas T

Power
Efficiency
F/A
Thermal losses
Frictional losses
Focus: BMEP

\[BMEP = \frac{P}{VN} \]

\[P = \eta_m \eta_{th} \eta_{ch} \eta_{vol} \rho_{air} VN (\frac{F}{A}) Q_R \]

\[\eta_m = \frac{P_{fuel} - Q_{env} - P_{mech}}{P_{fuel} - Q_{env}} \]

\[\eta_{th} = \frac{P_{fuel} - Q_{env}}{P_{fuel}} \]

\[\eta_{vol} = \frac{Q_{air}}{VN} \]

\[\eta_{ch} = \frac{\dot{m}_{fuel burned}}{\dot{m}_{fuel}} \]
BMEP also follows power law scaling

\[y = 659740x^{0.0913} \]

\[R^2 = 0.5477 \]
Better scaling: Normalized Power vs. Piston Area (Heywood 2000)

Normalized power = BMEP/2

\[y = 24.842x^{0.0273} \]

\[R^2 = 0.9903 \]
Dynamometer

- Fuel tank
- Fuel pressure sensor
- Fuel flow meter
- Cylinder Head T
- Muffler
- Exhaust T
- Air flow meter
- Plenum
- Absorber
- Speed Sensor
- Load Cell
Dynamometer

- Fuel Tank
- Cyl. Head T
- Throttle Servo
- Cooling Duct
- Scale
- Exhaust T
- Engine
- Speed Sensor
- Absorber
- Cradle
- Moment Arm
- Load Cell
Data Processing

- Power corrected to STP (ASME standard PTC 19.1)
- Heat loss computed using cylinder head T measurements and Nu correlations from Bubert et. al. 2006
- Frictional losses determined by motoring the engine while measuring torque and speed.
- Chemical efficiency inferred from measurements of output power, F/A, and the other efficiencies.
- Most challenging measurement: Fuel flow
Typical Results (AP ‘Yellowjacket’)
Efficiency Scaling at Peak BMEP

- Efficiencies decrease as size reduce.
- Significant variability between designs.

Graph showing displacement (m³) vs. efficiency (%) with uncertainty bars for different efficiencies and BMEP (Pa).
Efficiency Scaling at Constant F/A

- Decreasing size decreases efficiencies
- Significant variability between designs
Estimation of Minimum Size

Piston engines $A < 8 \text{ mm}^2$ (d < 3.2 mm) not possible
Conclusions

- Identified scaling laws for small engine performance
 - Best correlation between BMEP/2 and total piston area.
- Identified minimum length scale: $\sim 3 \text{ mm}$
- Minimum size/BMEP set by losses
 - As reduce size, losses become proportionally more important
- Best ways to improve performance:
 - Increase volumetric efficiency
 - Implement mixture control
 - Keep characteristic length $> \sim 10 \text{ mm}$
Future Work

• Improve fuel mass flow rate measurement
 – Biggest limitation at this point
• Improve heat loss and friction models
• Test more and smaller engines
• Develop model for chemical reaction
Acknowledgements

We would like to thank the Army Research Office and Dr. Tom Doligalski for supporting this work.
Fuel

<table>
<thead>
<tr>
<th>Component</th>
<th>χ</th>
<th>ρ</th>
<th>Q_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_3$COH</td>
<td>0.7</td>
<td>0.79</td>
<td>22.6</td>
</tr>
<tr>
<td>CH$_3$NO$_2$</td>
<td>0.1</td>
<td>1.11</td>
<td>11.6</td>
</tr>
<tr>
<td>Castor Oil</td>
<td>0.2</td>
<td>0.96</td>
<td>44.0</td>
</tr>
<tr>
<td>Mixture</td>
<td>1.0</td>
<td>0.86</td>
<td>26.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>g/cm3</th>
<th>kJ/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scaling Analysis

\[\eta = \frac{q_{\text{fuel}} - q_{\text{loss}}}{q_{\text{fuel}}} \]

\[q_{\text{loss}} \sim \text{Nu} \cdot I \cdot (T_f - T_w) \]

- Power Density (W/m\(^3\))
- Efficiency (%)
- \(l \) (m)
- \(S_L \)

Graph showing the relationship between power density and \(l \).
Fixed-Wing MAV

![Graph showing conversion efficiency and storage efficiency for different energy sources.](image)

Baseline fixed-wing MAV:
- \(X_f = 0.1 \)
- \(\eta_p = 0.8 \)
- \(L/D = 2 \)
- Endurance: 0.1 min

Equation for endurance:
\[
\tau = \left(\frac{\eta_{pwr}}{g} \right) \left(\eta_{prop} \frac{L}{D} \right) \ln \left(1 + \frac{m_f}{m_v} \right)
\]
Hovering MAV

Batteries:
- Ni-Cd
- Ni-MH
- Li-ion
- Adv. LPB
- DMFC

95% efficient

Fuel Cell:
- 85% efficient

HC Fuels:
- Fuel Oil, AVgas
- C₃H₈
- C₄H₁₀
- H₂

Baseline Vehicle Params:
- Rotor Efficiency = 70%
- Mass = 100g
- Rotor dia. = 10 cm
- Mission = 30 min

Baseline Vehicle Parameters:
- Rotor Efficiency = 70%
- Mass = 100g
- Rotor dia. = 10 cm
- Mission = 30 min

Equation:

\[\tau = \left(\frac{\eta_{pwr} Q_R}{g} \right) \left(\eta_{prop} \sqrt{\frac{\rho_{air}}{L_{disc}}} \right) \left(\frac{m_f}{m_v} \right) \]
Advantage of HC Fuels

- Energy density of HC fuels much higher than electrochemical sources
- Efficiency is the key to exploiting this advantage
 - Simplified by the fact that relatively low conversion efficiency is needed to outperform batteries.
- Efficiency is also the problem
 - As engines become smaller, they become less efficient.
- Challenge:
 - Develop small, highly efficient HC-fueled engines for MAVs
Examples of MAVs

Small flying vehicles:
- Mass < 100 g
- Flight endurance > 60 min
- Applications:
 - Surveillance
 - Chemical Detection
Existing MAV Performance

- Hoverfly [180g/5-10min]
- LuMAV [440g/5-10min]
- Microbat [10g/5 min]
- MicCOR [100g/2.75 min]
- Microcraft DAV [1500g]
- MicroSTAR [110g/25min]
- Objective [100g/60min]
- Black Widow [80g/22min]

Endurance (min) vs Weight (g) graph

Courtesy: Prof. Darryl Pines
Linear trend consistent with findings of McMahon and Bonner
Power Density

Mass (kg) vs. Power Density

- W/l
- W/kg
Power Density (Mass < 1 Kg)

- Large scatter in data
- Power density no longer increases with decreasing size
- Could efficiency be decreasing with size?
Efficiency (Mass < 1 Kg)

- Large scatter in efficiency estimates.
- How fast should efficiency decrease with size?
- How reliable is the data used to make the estimates?